Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
H T T
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2022 lúc 14:05

\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=6,25(cm)

AM=BC/2=3,125(cm)

\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)

\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

diggory ( kẻ lạc lõng )
15 tháng 5 2022 lúc 15:12

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :

\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)

+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\) 

\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :

\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)

\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)

+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :

\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)

 

 

diggory ( kẻ lạc lõng )
15 tháng 5 2022 lúc 14:59

undefined

H.Son
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 18:56

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=\dfrac{AH^2}{BH}=\dfrac{16}{3}\left(cm\right)\\AB^2=3\left(3+\dfrac{16}{3}\right)=25\left(cm\right)\\AC^2=\dfrac{16}{3}\left(3+\dfrac{16}{3}\right)=\dfrac{400}{9}\left(cm\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}HC=\dfrac{16}{3}\left(cm\right)\\AB=5\left(cm\right)\\AC=\dfrac{20}{3}\left(cm\right)\end{matrix}\right.\)

\(BC=\sqrt{AB^2+AC^2}=\dfrac{25}{3}\left(cm\right)\left(pytago\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 9 2019 lúc 17:23

Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

A B 2 + A C 2 = B C 2 ⇔ 3 2 + 4 2 = B C 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 2 2018 lúc 13:22

+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:

+) Áp dụng hệ thức về cạnh và đường cao trng tam giác vuông ABC với AH là đường cao ta có:

+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:

+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có:

+) Diện tích tam giác ABC với AH là đường cao ta có:

Vậy AB = 5cm, AC =  15 4 cm; AM =  25 8 cm;     S ∆ A B C = 75 8 c m 2 .

Đáp án cần chọn là: A

Bùi Văn hạo
Xem chi tiết
Akai Haruma
4 tháng 11 2023 lúc 15:29

Lời giải:

a.

Áp dụng hệ thức lượng trong tam giác vuông ta có:

$AH^2=BH.CH=3.4=12$

$\Rightarrow AH=\sqrt{12}=2\sqrt{3}$ (cm)

$AB^2=BH.BC=BH(BH+CH)=3(3+4)=21$

$\Rightarrow AB=\sqrt{21}$ (cm)

Akai Haruma
4 tháng 11 2023 lúc 15:29

Hình vẽ:
loading...

Đỗ trà my
Xem chi tiết
Thảo Lê Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 13:14

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

Nguyễn thanh phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 18:59

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>\(BC=\sqrt{25}=5\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=12/5=2,4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot5=3^2=9\)

=>BH=9/5=1,8(cm)

b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(sinB=\dfrac{4}{5}\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(sinC=\dfrac{3}{5}\)

Uyên Dii
Xem chi tiết
Despacito
15 tháng 10 2017 lúc 20:14

bạn vẽ hình nha mk ko biết vẽ sorry

Áp dung định lí pytago vào tam giác ABC vuông tại A đường cao AH ta có:

\(AB^2+AC^2=BC^2\)

hay \(4^2+3^2=BC^2\)

\(\Rightarrow BC^2=16+9\)

\(\Rightarrow BC^2=25\)

\(\Rightarrow BC=5\left(cm\right)\)

Áp dụng hệ thức giữa cạnh và đường vào tam giác vuông \(ABC\)vuông tại \(A\) đường cao \(AH\) ta có:

+  \(AB^2=BH.BC\)

hay \(4^2=HB.5\)

\(\Rightarrow HB=16:5\)

\(\Rightarrow HB=3,2\left(cm\right)\)

\(AC^2=HC.BC\)

hay \(3^2=HC.5\)

\(\Rightarrow HC=9:5\)

\(\Rightarrow HC=1,8\left(cm\right)\)

  vậy \(HB=3,2cm\)

           \(HC=1,8cm\)