Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Doãn Đức Khôi
Xem chi tiết
Doãn Đức Khôi
Xem chi tiết
Doãn Đức Khôi
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
ภ丶гєєรє❄
Xem chi tiết
Nguyễn Văn Dũng
Xem chi tiết
Vũ Minh Phương
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 18:05

Tứ giác AEHF là hình chữ nhật (có 3 góc vuông) \(\Rightarrow HE=AF\)

Áp dụng định lý Pitago trong tam giác vuông AFH:

\(AH^2=AF^2+HF^2=HE^2+HF^2\)

Áp dụng hệ thức lượng trong tam giác vuông AHB với đường cao HF:

\(HF^2=AF.FC\)

Tương tự:

\(HE^2=AE.EB\)

\(\Rightarrow AH^2=HE^2+HF^2=AE.EB+AF.FC\) (đpcm)

Nguyễn Việt Lâm
22 tháng 10 2021 lúc 18:05

undefined

👁💧👄💧👁
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 22:51

Cái bài này thì có lẽ bạn nên chứng minh AM⊥FE là nó ra liền à

Nguyễn Việt Lâm
12 tháng 8 2021 lúc 23:19

Tứ giác AEHF là hình chữ nhật (3 góc vuông) \(\Rightarrow HE=AF\) và \(AE=HF\)

\(S_{ABC}=S_{ABH}+S_{ACH}=\dfrac{1}{2}HE.AB+\dfrac{1}{2}HF.AC=\dfrac{1}{2}AB.AF+\dfrac{1}{2}AC.AE\)

Gọi K là trung điểm AB \(\Rightarrow MK\) là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MK=\dfrac{1}{2}AC\\MK\perp AB\end{matrix}\right.\)

Gọi D là trung điểm AC \(\Rightarrow MD\) là đtb tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MD=\dfrac{1}{2}AB\\MD\perp AC\end{matrix}\right.\)

\(S_{AEMF}=S_{ABC}-\left(S_{BME}+S_{CMF}\right)=S_{ABC}-\left(\dfrac{1}{2}MK.BE+\dfrac{1}{2}MD.CF\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(\dfrac{1}{2}AC.\left(AB-AE\right)+\dfrac{1}{2}AB.\left(AC-AF\right)\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(AB.AC-\left(\dfrac{1}{2}AC.AE+\dfrac{1}{2}AB.AF\right)\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(2S_{ABC}-S_{ABC}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)

Nguyễn Việt Lâm
12 tháng 8 2021 lúc 23:20

undefined

Nguyễn Quân
Xem chi tiết
Tô Mì
22 tháng 8 2023 lúc 19:34

Bạn tự vẽ hình.

(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)

+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)

(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)

\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.

Do đó, \(EF=AH\left(đpcm\right)\)