Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
👁💧👄💧👁

Cho tam giác ABC vuông tại A, đường cao AH. E, F lần lượt là hình chiếu của H trên AB, AC. Gọi M là trung điểm BC. Chứng minh \(S_{AEMF}=\dfrac{1}{2}S_{ABC}\)

Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 22:51

Cái bài này thì có lẽ bạn nên chứng minh AM⊥FE là nó ra liền à

Nguyễn Việt Lâm
12 tháng 8 2021 lúc 23:19

Tứ giác AEHF là hình chữ nhật (3 góc vuông) \(\Rightarrow HE=AF\) và \(AE=HF\)

\(S_{ABC}=S_{ABH}+S_{ACH}=\dfrac{1}{2}HE.AB+\dfrac{1}{2}HF.AC=\dfrac{1}{2}AB.AF+\dfrac{1}{2}AC.AE\)

Gọi K là trung điểm AB \(\Rightarrow MK\) là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MK=\dfrac{1}{2}AC\\MK\perp AB\end{matrix}\right.\)

Gọi D là trung điểm AC \(\Rightarrow MD\) là đtb tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MD=\dfrac{1}{2}AB\\MD\perp AC\end{matrix}\right.\)

\(S_{AEMF}=S_{ABC}-\left(S_{BME}+S_{CMF}\right)=S_{ABC}-\left(\dfrac{1}{2}MK.BE+\dfrac{1}{2}MD.CF\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(\dfrac{1}{2}AC.\left(AB-AE\right)+\dfrac{1}{2}AB.\left(AC-AF\right)\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(AB.AC-\left(\dfrac{1}{2}AC.AE+\dfrac{1}{2}AB.AF\right)\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(2S_{ABC}-S_{ABC}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)

Nguyễn Việt Lâm
12 tháng 8 2021 lúc 23:20

undefined


Các câu hỏi tương tự
👁💧👄💧👁
Xem chi tiết
hương trà nguyễn thị
Xem chi tiết
Bánh Canh Chua Ngọt
Xem chi tiết
Lmanh
Xem chi tiết
Lynn Nguyễn
Xem chi tiết
Nguyễn Lam Giang
Xem chi tiết
Huy
Xem chi tiết
phương Thảo
Xem chi tiết
nguyễn hà phương
Xem chi tiết