Cho tam giác ABC vuông tại A đường cao AH gọi E F lần lượt là hình chiếu của H trên AB và AC
a) chứng minh rằng tam giác AEF đồng dạng tam giác ACB b) cho AH = 4,8 cm; BC = 10 cm. Tính diện tích tam giác AEF
C) lấy điểm I đối xứng với H qua AB . Từ B Kẻ đường vuông góc với BC cắt AI ở k Chứng minh rằng KC, AH, EF đồng quy tại 1 điểm
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
Bài 4: Cho tam giác ABC vuông tại A đường cao AH .
a) Chứng minh tam giác AHB đồng dạng tam giác ABC
b) Gọi M , N lần lượt là trung điểm của BC và AB . Đường vuông góc BC kẻ từ B cắt MN tại I . Chứng minh
c) IC cắt AH tại O . Chứng minh O là trung điểm AH
d) Gọi K là giao điểm của CA và BI . Tính độ dài BK ,biết AB = 15 cm , AC = 20 cm .
Cho tam giác ABC vuông tại A (AB<AC), đường trung tuyến Am. Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F. Kẻ AH vuông góc với BC (H thuộc BC), AH cắt FE tại I. Chứng minh rằng :
a.Góc BAM = góc ABM.
b. Góc ACB = góc AEF từ đó suy ra tam giác MBE đồng dạng với tam giác MFC.
c.AB.AE = AC.AF
d.S ABC/ S AFE =(AM/AI)^2
GIúp mình với nay mình thi rồi
Bài 1: Cho tam giác ABC vuông tại A có đường phân giác BD, đường trung tuyến AM, đường cao AH.
a) Tính AB, BC, AH, AM. Biết AD = 3 cm; CD = 5 cm.
b) Gọi I, K lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng AM vuông góc vs IK.
Cho tam giác nhọn ABC, AH là đường cao. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB và AC. Đường thẳng EF và BC cắt nhau tại D
a. chứng minh tam giác AFH đồng dạng tam giác AFC
b.chứng minh AH^2=AE.AB
c.chứng minh tam giác AEF đồng dạng tam giác ACB
d.Giả sử diện tích tam giacs EHF bằng ba lần diện tích tam giác DHE. tínhtỉ số HE/HF
ho tam giác vuông abc vuông tại a có ab=6cm,ac=8cm. kẻ đường cao ah.
a) chứng minh tam giác abc đồng dạng với tam giác hba
b)tính độ dài các cạnh bc, ah,bh
c)gọi i và k lần lượt là hình chiếu của h lên cạnh ab và ac. Chứng minh ai.ab=ak.ac
cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,đường cao AH a/ chứng minh tam giác ABC đồng dạng với tam giác HBA . Tính BC,AH. b/ kẻ HM vuông góc với AB tại M. chứng minh: HM^2=MA*MB c/ MC cắt AH tại I , đường thẳng qua I và song song với AC cắt AB,BC lần lượt tại E,F . CM: IF=IE
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE