Giải pt: `(\sqrt(2-\sqrt2))^x+(\sqrt(2-\sqrt2))^x=2^x`
Thầy lâm cíu ....
Cho biểu thức $A = \dfrac{\sqrt x + 2}{\sqrt x + 3} - \dfrac5{x + \sqrt x - 6} - \dfrac1{\sqrt x-2}$ với $x\ge 0$ và $x \ne 4$.
1. Rút gọn biểu thức $A$.
2. Tính giá trị của $A$ khi $x = 6+4\sqrt2$.
a, Với \(x\ge0,x\ne4\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-5-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
b, Ta có \(x=6+4\sqrt{2}=2^2+4\sqrt{2}+\left(\sqrt{2}\right)^2=\left(2+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|=2+\sqrt{2}\)do \(2+\sqrt{2}>0\)
\(\Rightarrow A=\frac{2+\sqrt{2}-4}{2+\sqrt{2}-2}=\frac{-2+\sqrt{2}}{\sqrt{2}}=\frac{-2\sqrt{2}+2}{2}=\frac{-2\left(\sqrt{2}-1\right)}{2}=1-\sqrt{2}\)
1, A = \(\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)
2 , A = \(1-\sqrt{2}\)
Giải phương trình:
`x(3-\sqrt{3x-1})=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1`
Chú Lâm cíu cháu :<
ĐKXĐ: ...
\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)
\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ: x \(\ge\)\(\dfrac{1}{3}\)
pt\(\Leftrightarrow\)x(\(\sqrt{x+1}-\sqrt{3x-1}\))+\(\sqrt{3x-1}\left(\sqrt{3x-1}-\sqrt{x+1}\right)\)=0
\(\Leftrightarrow\)(\(\sqrt{x+1}-\sqrt{3x-1}\))(1-\(\sqrt{3x-1}\))=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{3x-1}\\1=\sqrt{3x-1}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)(t/m x \(\ge\)\(\dfrac{1}{3}\))
Vậy.....................
\(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)(Đk x≥\(\dfrac{1}{3}\))
ta có:\(x\left(3-\sqrt{3x-1}\right)\)
=\(3x-x\sqrt{3x-1}\)
=\(3x-1-x\sqrt{3x-1}+1\)
=\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)
Ta có \(\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
=\(\sqrt{x^2+2x+1-2+2x^2}-x\sqrt{x+1}+1\)
=\(\sqrt{\left(x+1\right)\left(3x-1\right)}-x\sqrt{x+1}+1\)
=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
ta có \(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)=\sqrt{x+1}\left(\sqrt{3x-1}-x\right)\)
⇔\(\sqrt{3x-1}=\sqrt{x+1}\)
⇔\(3x-1=x+1\)
⇔\(2x=2\)
⇔x=1(N)
Vậy x=1
\((2\sqrt5 . \sqrt2 - 3 \sqrt{40} + \sqrt{90} :3) :\sqrt{640}\)
1. Giải phương trình $\sqrt2.\sqrt{2x^2 + x + 1} - \sqrt{4x-1} + 2x^2+3x-3 = 0$.
2. Cho các số thực dương $a, b, c$ thỏa mãn $ab+bc+ca = 3.$ Chứng minh
$\dfrac{a^3}{b+2c} + \dfrac{b^3}{c+2a} + \dfrac{c^3}{a+2b} \ge 1.$
b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)
\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )
mà \(a^2+b^2+c^2\ge ab+bc+ac\)
\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm )
1.
Điều kiện .
Phương trình tương đương với \\
Với ta có:
.
Suy ra .
Vậy phương trình có nghiệm duy nhất
2.
Đặt
Áp dụng bất đẳng thức Cauchy cho hai số dương và ta có
.
Tương tự , .
Cộng các vế ta có .
Mà nên (ta có đpcm).
1.
√2 × √(2x2+x+1) + √(4x-1) + 3x-3=0
⇌[√(4x2+2x+2)-2] - [√(4x-1) -1] + (2x2+3x-2)=0
⇌(4x2+2x-2)/[√(4x2+2x+2)+2] - (4x-2)/[√(4x-1)+1] + (2x-1)(x+2) =0
⇔(2x-1) × [(2x+2)/√(4x2+2x+2+2) - 2/(√4x-1)+1+x+2]=0
Với x≥1/4 thì (2x+2)/(√4x2+2x+2+2)≥0 hoặc x+2>2 hoặc (√4x-1)+1≥1 ⇌ 2/[(√4x-1)+1]≤2
⇒(2x+2)/[(√4x2+2x+2)+2] - 2/[(x-1)+1]+x+2>0-2+2=0
⇌ 2x-1=0⇒x=1/2
Vậy x=1/2
2.
Áp dụng bất đẳng thức ta có :
Vế trái = a4/(ab +2ac) + b4/(bc+2ab) + c4/(ac+2bc)≥[(a2 + b2 +c2)2]/[3(ab+bc+ca) =[(a2+b2+c2)2]/9
Ấp dụng bất đẳng thức ta có :
ab+bc+ca≤a2+b2+c2
Vế trái ≥ [(a2+b2+c2)]/9≥32/9 =1
⇒ Vế trái ≥1 (đpcm)
Dấu = xảy ra khi a=b=c=1
Tính cá tích phân sau:
I = \(\int\limits_0^1 {x^2\over \sqrt{3+2x-x^2}}dx\)
I = \(\int\limits_1^\sqrt2 {\sqrt{x^2-1}\over x}dx\)
I = \(\int\limits_1^2 {x+1\over \sqrt{x(2-x)}}dx\)
I = \(\int\limits_0^1 {dx\over x^2+x+1}\)
Cậu sống ở đâu hở ? Lấy đâu ra toán khó thế ?
giải hộ mình bài này:
So sánh:
a.(2*sqrt 10)+(3*sqrt 3) và (3*sqrt 5)+(2*sqrt 7)
b.(sqrt2 +sqrt3) và 2
THANKS!
a: \(\left(2\sqrt{10}+3\sqrt{3}\right)^2=67+12\sqrt{30}\)
\(\left(3\sqrt{5}+2\sqrt{7}\right)^2=77+12\sqrt{35}\)
mà \(12\sqrt{30}< 12\sqrt{35};67< 77\)
nên \(2\sqrt{10}+3\sqrt{3}< 3\sqrt{5}+2\sqrt{7}\)
b: \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}\)
\(2^2=4\)
mà 5>4
nên \(\sqrt{2}+\sqrt{3}>2\)
rút gọn phương trình sau
\(\sqrt(2-\sqrt3)(\sqrt6+\sqrt2)\)
giải thích kĩ nha
\(\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6+\sqrt{2}}\right)}=2\)
=2.
cho a,b,c>0 và `a+b+c<=3/2`
Tìm `min_p=\sqrt{a^2+1/b^2}+\sqrt{b^2+1/c^2}+\sqrt{c^2+1/a^2}`
Thầy Lâm cíu........
1 bài Mincopxki khá quen:
\(P\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)
Đến đây thì nó là bài Cô-si có biên, cứ tách ghép theo điểm rơi là được:
\(P\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}+\dfrac{1215}{16\left(a+b+c\right)^2}}\)
\(P\ge\sqrt{2\sqrt{\dfrac{81\left(a+b+c\right)^2}{16\left(a+b+c\right)^2}}+\dfrac{1215}{16.\left(\dfrac{3}{2}\right)^2}}=\dfrac{3\sqrt{17}}{2}\)
Dấu "=" xayr a khi \(a=b=c=\dfrac{1}{2}\)
Cho a,b,c là độ dài ba cạnh tam giác.Chứng minh rằng:`sqrt{(a(b+c))/(a^2+(b+c)^2)}+sqrt{(b(c+a))/(b^2+(c+a)^2)}+sqrt{(c(a+b))/(c^2+(a+b)^2)}>sqrt2`
Áp dụng bđt AM - GM ta có \(\sqrt{\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}+1\right)=\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{2a\left(b+c\right)}\)
\(\Rightarrow\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}\ge\dfrac{2\sqrt{2}a\left(b+c\right)}{\left(a+b+c\right)^2}\).
Tương tự,...
Cộng vế với vế ta có \(\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b\left(c+a\right)}{b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c\left(a+b\right)}{c^2+\left(a+b\right)^2}}\ge\dfrac{4\sqrt{2}\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\). (*)
Mặt khác do a, b, c là độ dài ba cạnh của 1 tam giác nên \(a\left(b+c-a\right)+b\left(c+a-b\right)+c\left(a+b-c\right)>0\Rightarrow2\left(ab+bc+ca\right)\ge a^2+b^2+c^2\Rightarrow4\left(ab+bc+ca\right)\ge\left(a+b+c\right)^2\). (**)
Từ (*) và (**) ta có đpcm.