Yeutoanhoc

Cho a,b,c là độ dài ba cạnh tam giác.Chứng minh rằng:`sqrt{(a(b+c))/(a^2+(b+c)^2)}+sqrt{(b(c+a))/(b^2+(c+a)^2)}+sqrt{(c(a+b))/(c^2+(a+b)^2)}>sqrt2`

Trần Minh Hoàng
1 tháng 6 2021 lúc 7:12

Áp dụng bđt AM - GM ta có \(\sqrt{\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}+1\right)=\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{2a\left(b+c\right)}\)

\(\Rightarrow\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}\ge\dfrac{2\sqrt{2}a\left(b+c\right)}{\left(a+b+c\right)^2}\).

Tương tự,...

Cộng vế với vế ta có \(\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b\left(c+a\right)}{b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c\left(a+b\right)}{c^2+\left(a+b\right)^2}}\ge\dfrac{4\sqrt{2}\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\). (*)

Mặt khác do a, b, c là độ dài ba cạnh của 1 tam giác nên \(a\left(b+c-a\right)+b\left(c+a-b\right)+c\left(a+b-c\right)>0\Rightarrow2\left(ab+bc+ca\right)\ge a^2+b^2+c^2\Rightarrow4\left(ab+bc+ca\right)\ge\left(a+b+c\right)^2\). (**)

Từ (*) và (**) ta có đpcm.

 

Bình luận (0)

Các câu hỏi tương tự
Hoàng Minh
Xem chi tiết
Hoang Tran
Xem chi tiết
Trần Đức Thắng
Xem chi tiết
Nguyễn Anh Thơ
Xem chi tiết
Trần Đình Khoa
Xem chi tiết
Lung Thị Linh
Xem chi tiết
Bảo Vi
Xem chi tiết
Đặng Thanh Thủy
Xem chi tiết
Hồ Xuân Thái
Xem chi tiết