2\(\sqrt{49}\)
so sánh các số sau : \(a=\dfrac{35}{49};b=\sqrt{\dfrac{5^2}{7^2}};c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}};d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
\(\left\{{}\begin{matrix}a=\dfrac{35}{49}=\dfrac{5}{7}\\b=\sqrt{\dfrac{5^2}{7^2}}=\dfrac{5}{7}\\c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\dfrac{5+35}{7+49}=\dfrac{5}{7}\\d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\dfrac{5-35}{7-49}=\dfrac{5}{7}\end{matrix}\right.\)
\(\Rightarrow a=b=c=d=\dfrac{5}{7}\)
\(a=\dfrac{35}{49};b=\dfrac{5}{7}\\ c,=\dfrac{5+35}{7+49}=\dfrac{12}{14}=\dfrac{6}{7}\\ d,=\dfrac{5-35}{7-49}\)
Áp dụng t/c dtsbn:
\(\dfrac{5}{7}=\dfrac{35}{49}=\dfrac{5+35}{7+49}=\dfrac{5-35}{7-49}\) hay \(a=b=c=d\)
giải pt :
a,\(\sqrt{x+14\sqrt{14x-49}}+\sqrt{x-14\sqrt{14x-49}}=\sqrt{14}\)
b, \(\sqrt{x-1+2\sqrt{x-1}}-\sqrt{x-1-2\sqrt{x-1}}=1\)
So sánh các số sau:
a = \(\frac{35}{49}\)b = \(\sqrt{\frac{5^2}{7^2}}\)c = \(\frac{\sqrt{5^2+\sqrt{35^2}}}{\sqrt{7^2}+\sqrt{49^2}}\)d = \(\frac{\sqrt{5^2-\sqrt{35^2}}}{\sqrt{7^2}-\sqrt{49^2}}\)
So sánh các số sau:
a = 3549 b = √5272 c = √52+√352√72+√492 d = √52−√352√72−√492
=> A < B
bai nay minh chua hoc den nen khong the giai
Chứng minh rằng : \(\sqrt[4]{49+\sqrt{20\sqrt{6}}}+\sqrt[4]{49-\sqrt{20\sqrt{6}}}=2\sqrt{3}\)
Ta có \(\sqrt[4]{49+20\sqrt{6}}=\sqrt[4]{25+10\sqrt{24}+24}=\sqrt[4]{\left(5+2\sqrt{6}\right)^2}\)
\(=\sqrt[4]{\left(\sqrt{3}+\sqrt{2}\right)^4}=\sqrt{3}+\sqrt{2}\)
Tương tự : \(\sqrt[4]{49-20\sqrt{6}}=\sqrt{3}-\sqrt{2}\) ( Do \(\sqrt{3}>\sqrt{2}\) )
Suy ra \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)
a) A=\(\sqrt{\left(4-\sqrt{15}\right)^2+\sqrt{15}}\)
b) B=\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
c) C=\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
d)D=\(\sqrt{29+12\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
a: Sửa đề: \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}=4\)
b: \(A=2-\sqrt{3}+\sqrt{3}-1=1\)
c: \(C=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
d: Sửa đề: \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=2\sqrt{5}+3-2\sqrt{5}+3\)
=6
a) \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(A=\left|4-\sqrt{15}\right|+\sqrt{15}\)
\(A=4-\sqrt{15}+\sqrt{15}\)
\(A=4\)
b) \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)}\)
\(B=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(B=2-\sqrt{3}-1+\sqrt{3}\)
\(B=1\)
c) \(C=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(C=\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{15}\cdot2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot2+2^2}\)
\(C=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(C=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)
\(C=3\sqrt{5}-2-3\sqrt{5}-2\)
\(C=-4\)
d) \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(D=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^3}\)
\(D=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(D=\left|2\sqrt{5}+3\right|-\left|2\sqrt{5}-3\right|\)
\(D=2\sqrt{5}+3-2\sqrt{5}+3\)
\(D=6\)
CMR : \(\sqrt[4]{49+20\times\sqrt{6}}+\sqrt[4]{49-20\times\sqrt{6}}=2\times\sqrt{3}\)
\(\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)= \(2\sqrt{3}\)
\(49+20\sqrt{6}=25+2.5.2\sqrt{6}+24=\left(5+2\sqrt{6}\right)^2=\left(3+2.\sqrt{3}\sqrt{2}+2\right)^2=\left(\sqrt{3}+\sqrt{2}\right)^4\)
\(\Leftrightarrow\sqrt[4]{49+20\sqrt{6}}=\sqrt{3}+\sqrt{2}\)
tuiwng tự \(\Leftrightarrow\sqrt[4]{49-20\sqrt{6}}=\sqrt{3}-\sqrt{2}\)
=> Cộng lại = > dpcm
tính A=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}\)+\(\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{49\sqrt{48}+48\sqrt{49}}\)
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow A=\frac{1}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{48}}{48}-\frac{\sqrt{49}}{49}\)
\(=1-\frac{\sqrt{49}}{49}=1-\frac{7}{49}=1-\frac{1}{7}=\frac{6}{7}\)
\(64.\left(\dfrac{-1}{8}\right)^2+3,5.\sqrt{\dfrac{16}{49}}-\sqrt{49}:4\)
So sánh
a)\(\sqrt{21}+\sqrt{5}\) và \(\sqrt{20}-\sqrt{6}\)
b)\(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}\) và \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
1.Chứng minh
a) \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)
b) A= \(\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\) là số nguyên.
a) \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=\sqrt[4]{25+2\sqrt{600}+24}+\sqrt[4]{25-2\sqrt{600}+24}\\ =\sqrt[4]{\left(\sqrt{25}+\sqrt{24}\right)^2}+\sqrt[4]{\left(\sqrt{25}-\sqrt{24}\right)^2}=\sqrt{\sqrt{25}+\sqrt{24}}+\sqrt{\sqrt{25}-\sqrt{24}}\\ =\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)