Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hongson le

Những câu hỏi liên quan
Moon
Xem chi tiết
Lấp La Lấp Lánh
14 tháng 10 2021 lúc 17:09

\(\left\{{}\begin{matrix}a=\dfrac{35}{49}=\dfrac{5}{7}\\b=\sqrt{\dfrac{5^2}{7^2}}=\dfrac{5}{7}\\c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\dfrac{5+35}{7+49}=\dfrac{5}{7}\\d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\dfrac{5-35}{7-49}=\dfrac{5}{7}\end{matrix}\right.\)

\(\Rightarrow a=b=c=d=\dfrac{5}{7}\)

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 17:10

\(a=\dfrac{35}{49};b=\dfrac{5}{7}\\ c,=\dfrac{5+35}{7+49}=\dfrac{12}{14}=\dfrac{6}{7}\\ d,=\dfrac{5-35}{7-49}\)

Áp dụng t/c dtsbn:

\(\dfrac{5}{7}=\dfrac{35}{49}=\dfrac{5+35}{7+49}=\dfrac{5-35}{7-49}\) hay \(a=b=c=d\)

 

Lê Thu Hiền
Xem chi tiết
Bạch Huyết Vũ
Xem chi tiết
Aeris
6 tháng 11 2017 lúc 21:33

tính bình thường thôi

Nguyễn Ngọc Minh Hoài
29 tháng 10 2017 lúc 8:38

So sánh các số sau: 

a = 3549 b = 5272 c = 52+35272+492 d = 5235272492 

=> A < B

Nuyễn Ngọc Thảo
29 tháng 10 2017 lúc 8:53

bai nay minh chua hoc den nen khong the giai

Mai Duy Thanh
Xem chi tiết
Bùi Quỳnh Hương
5 tháng 5 2016 lúc 12:05

Ta có \(\sqrt[4]{49+20\sqrt{6}}=\sqrt[4]{25+10\sqrt{24}+24}=\sqrt[4]{\left(5+2\sqrt{6}\right)^2}\)

                               \(=\sqrt[4]{\left(\sqrt{3}+\sqrt{2}\right)^4}=\sqrt{3}+\sqrt{2}\)

Tương tự : \(\sqrt[4]{49-20\sqrt{6}}=\sqrt{3}-\sqrt{2}\) ( Do \(\sqrt{3}>\sqrt{2}\) )

Suy ra \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)

           

Quân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2023 lúc 9:37

a: Sửa đề: \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(=4-\sqrt{15}+\sqrt{15}=4\)

b: \(A=2-\sqrt{3}+\sqrt{3}-1=1\)

c: \(C=3\sqrt{5}-2-3\sqrt{5}-2=-4\)

d: Sửa đề: \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=2\sqrt{5}+3-2\sqrt{5}+3\)

=6

HT.Phong (9A5)
7 tháng 7 2023 lúc 9:55

a) \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(A=\left|4-\sqrt{15}\right|+\sqrt{15}\)

\(A=4-\sqrt{15}+\sqrt{15}\)

\(A=4\)

b) \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)}\)

\(B=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)

\(B=2-\sqrt{3}-1+\sqrt{3}\)

\(B=1\)

c) \(C=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(C=\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{15}\cdot2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot2+2^2}\)

\(C=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(C=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)

\(C=3\sqrt{5}-2-3\sqrt{5}-2\)

\(C=-4\)

d) \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(D=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^3}\)

\(D=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(D=\left|2\sqrt{5}+3\right|-\left|2\sqrt{5}-3\right|\)

\(D=2\sqrt{5}+3-2\sqrt{5}+3\)

\(D=6\)

Huỳnh Cẩm
Xem chi tiết
alibaba nguyễn
9 tháng 9 2016 lúc 18:50

\(\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)\(2\sqrt{3}\)

Nguyễn Thị Thùy Dương
10 tháng 9 2016 lúc 12:14

\(49+20\sqrt{6}=25+2.5.2\sqrt{6}+24=\left(5+2\sqrt{6}\right)^2=\left(3+2.\sqrt{3}\sqrt{2}+2\right)^2=\left(\sqrt{3}+\sqrt{2}\right)^4\)

\(\Leftrightarrow\sqrt[4]{49+20\sqrt{6}}=\sqrt{3}+\sqrt{2}\)

tuiwng tự \(\Leftrightarrow\sqrt[4]{49-20\sqrt{6}}=\sqrt{3}-\sqrt{2}\)

=> Cộng lại  = > dpcm

trần cẩm tú
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2020 lúc 21:24

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)

\(\Rightarrow A=\frac{1}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{48}}{48}-\frac{\sqrt{49}}{49}\)

\(=1-\frac{\sqrt{49}}{49}=1-\frac{7}{49}=1-\frac{1}{7}=\frac{6}{7}\)

ỵyjfdfj
Xem chi tiết
Bảo Ngọc cute
Xem chi tiết
Aki Tsuki
10 tháng 12 2016 lúc 22:42

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

 

Hương Giang
Xem chi tiết
Chí Cường
8 tháng 10 2017 lúc 16:22

a) \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=\sqrt[4]{25+2\sqrt{600}+24}+\sqrt[4]{25-2\sqrt{600}+24}\\ =\sqrt[4]{\left(\sqrt{25}+\sqrt{24}\right)^2}+\sqrt[4]{\left(\sqrt{25}-\sqrt{24}\right)^2}=\sqrt{\sqrt{25}+\sqrt{24}}+\sqrt{\sqrt{25}-\sqrt{24}}\\ =\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)