Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2022 lúc 22:26

\(y=\dfrac{1}{2x^2+x-1}=\dfrac{1}{\left(x+1\right)\left(2x-1\right)}=\dfrac{2}{3}.\dfrac{1}{2x-1}-\dfrac{1}{3}.\dfrac{1}{x+1}\)

\(y'=\dfrac{2}{3}.\dfrac{-2}{\left(2x-1\right)^2}-\dfrac{1}{3}.\dfrac{-1}{\left(x+1\right)^2}=\dfrac{2}{3}.\dfrac{\left(-1\right)^1.2^1.1!}{\left(2x-1\right)^2}-\dfrac{1}{3}.\dfrac{\left(-1\right)^1.1!}{\left(x+1\right)^2}\)

\(y''=\dfrac{2}{3}.\dfrac{\left(-1\right)^2.2^2.2!}{\left(2x-1\right)^3}-\dfrac{1}{3}.\dfrac{\left(-1\right)^2.2!}{\left(x+1\right)^3}\)

\(\Rightarrow y^{\left(n\right)}=\dfrac{2}{3}.\dfrac{\left(-1\right)^n.2^n.n!}{\left(2x-1\right)^{n+1}}-\dfrac{1}{3}.\dfrac{\left(-1\right)^n.n!}{\left(x+1\right)^{n+1}}\)

\(\Rightarrow y^{\left(2019\right)}=\dfrac{2}{3}.\dfrac{\left(-1\right)^{2019}.2^{2019}.2019!}{\left(2x-1\right)^{2020}}-\dfrac{1}{3}.\dfrac{\left(-1\right)^{2019}.2019!}{\left(x+1\right)^{2020}}\)

\(=\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2020}}{\left(2x-1\right)^{2020}}\right)\)

Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2022 lúc 23:27

\(y=\dfrac{1}{3x^2-x-2}=\dfrac{1}{\left(x-1\right)\left(3x+2\right)}=\dfrac{1}{5}.\dfrac{1}{x-1}-\dfrac{3}{5}.\dfrac{1}{3x+2}\)

\(y'=\dfrac{1}{5}.\dfrac{\left(-1\right)^1.1!}{\left(x-1\right)^2}-\dfrac{3}{5}.\dfrac{\left(-1\right)^1.3^1.1!}{\left(3x+2\right)^2}\)

\(y''=\dfrac{1}{5}.\dfrac{\left(-1\right)^2.2!}{\left(x-1\right)^3}-\dfrac{3}{5}.\dfrac{\left(-1\right)^2.3^2.2!}{\left(3x+2\right)^3}\)

\(\Rightarrow y^{\left(n\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^n.n!}{\left(x-1\right)^{n+1}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^n.3^n.n!}{\left(3x+2\right)^{n+1}}\)

\(\Rightarrow y^{\left(2019\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^{2019}.2019!}{\left(x-1\right)^{2020}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^{2019}.3^{2019}.2019!}{\left(3x+2\right)^{2019}}\)

\(=\dfrac{2019!}{5}\left(\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)

Xem chi tiết
Lê Song Phương
21 tháng 4 2023 lúc 21:03

Biến đổi thừa số tổng quát: \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).

Do đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\)\(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\)\(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\),..., \(1+\dfrac{1}{2018.2020}=\dfrac{2019^2}{2018.2020}\)\(1+\dfrac{1}{2019.2021}=\dfrac{2020^2}{2019.2021}\). Từ đó suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)\) 

\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}.\dfrac{6^2}{5.7}...\dfrac{2019^2}{2018.2020}.\dfrac{2020^2}{2019.2021}\)

\(=\dfrac{2.2020}{2021}=\dfrac{4040}{2021}\)

Vân Nguyễn Thị
Xem chi tiết
Phạm Trần Hoàng Anh
22 tháng 9 2021 lúc 17:35

::((

Dân Chơi Đất Bắc=))))
22 tháng 9 2021 lúc 17:35

so hardngaingung

Lấp La Lấp Lánh
22 tháng 9 2021 lúc 17:40

\(A=\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{2019}+\left(\dfrac{1}{3}\right)^{2020}\)

\(\Rightarrow\dfrac{1}{3}A=\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{2021}\)

\(\Rightarrow\dfrac{2}{3}A=A-\dfrac{1}{3}A=\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{2020}-\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^{2021}=\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^{2021}< \dfrac{1}{3}\)

\(\Rightarrow A< \dfrac{1}{2}\)

Dương Gia Huy
Xem chi tiết
Đinh Đức Anh
10 tháng 1 2022 lúc 20:42

bằng 0 nha bạn

tick cho mình

Lấp La Lấp Lánh
10 tháng 1 2022 lúc 20:43

\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)

bbiooo
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2021 lúc 10:47

a) Ta có: \(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2+1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2+1\right]\left[\left(\sqrt{2}\right)^2-1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^4-1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^8-1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^{16}-1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^{32}-1\right]\)

\(=65535\sqrt{2}+65535\)

b) Ta có: \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2020}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2020}-\sqrt{2019}\)

\(=\sqrt{2020}-1\)

\(=2\sqrt{505}-1\)

c) Ta có: \(C^3=26+15\sqrt{3}+26-15\sqrt{3}+3\cdot\sqrt[3]{\left(26+15\sqrt{3}\right)\left(26-15\sqrt{3}\right)}\cdot\left(\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\right)\)

\(\Leftrightarrow C^3=52+3\cdot C\)

\(\Leftrightarrow C^3-3\cdot C-52=0\)

\(\Leftrightarrow C^3-4C^2+4C^2-16C+13C-52=0\)

\(\Leftrightarrow C^2\left(C-4\right)+4C\left(C-4\right)+13\left(C-4\right)=0\)

\(\Leftrightarrow\left(C-4\right)\left(C^2+4C+13\right)=0\)

mà \(C^2+4C+13>0\)

nên C-4=0

hay C=4

Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 14:09

a: =2+6*(-1)^2019+2026

=2028-6

=2022

b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)

\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)

\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)

Cô Pê
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 1 2019 lúc 12:34

\(\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{1}{3}\left(\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{3n}{6\left(3n+2\right)}=\dfrac{n}{6n+4}\)

\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}=\dfrac{1}{4}\left(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{3.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{n\left(n+2\right)}{3\left(2n+1\right)\left(2n+3\right)}\)

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow C=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(\Rightarrow C=2019-\dfrac{1}{2019}\)

Cô Pê
22 tháng 1 2019 lúc 6:10

@Luân Đào @Nguyễn Việt Lâm

thuỳ linh
Xem chi tiết
Ngô Hải Nam
22 tháng 2 2023 lúc 20:26

a)

`(2x-1)(x+2/3)=0`

\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

b)

\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)

\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)

\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)

\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)

\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)

Nguyễn Đắc Linh
22 tháng 2 2023 lúc 20:27

sai rồi , x không thể có 2 giá trị

Hoàng Thị Thu Phúc
22 tháng 2 2023 lúc 20:28

a) + Chia thành 2 trường hợp 

- 2x - 1 = 0

2x = 0 + 1

2x = 1

x = 1 : 2

x = 0,5

- x + 2/3 = 0

x = 0 - 2/3

x = -2/3

vậy x = { 0,5 ; -2/3 }

Nguyen Le Tuong Vy
Xem chi tiết
HT.Phong (9A5)
12 tháng 7 2023 lúc 18:07

a) \(A=\left(-0,75-\dfrac{1}{4}\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right):\left(-3\right)\)

\(A=\left(-0,75-0,25\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right)\cdot\dfrac{-1}{3}\)

\(A=\left(-1\right):\left(-5\right)+\dfrac{1}{48}-\dfrac{1}{18}\)

\(A=\dfrac{1}{5}+\dfrac{1}{48}-\dfrac{1}{18}\)

\(A=\dfrac{119}{720}\)

b) \(B=\left(\dfrac{6}{25}-1,24\right):\dfrac{3}{7}:\left[\left(3\dfrac{1}{2}-3\dfrac{2}{3}\right):\dfrac{1}{14}\right]\)

\(B=\left(0,24-1,24\right):\dfrac{3}{7}:\left[\left(\dfrac{7}{2}-\dfrac{11}{3}\right):\dfrac{1}{14}\right]\)

\(B=-1:\dfrac{3}{7}:\left(-\dfrac{1}{6}:\dfrac{1}{14}\right)\)

\(B=-\dfrac{7}{3}:-\dfrac{7}{3}\)

\(B=1\)

a, A = (-0,75 - \(\dfrac{1}{4}\)) : (-5) + \(\dfrac{1}{48}\) - (- \(\dfrac{1}{6}\)) : (-3)

   A  = -(0,75 + 0,25): (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)

   A = -1 : (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)

   A = \(\dfrac{1}{5}\) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)

  A = \(\dfrac{53}{240}\) - \(\dfrac{1}{18}\)

 A = \(\dfrac{119}{720}\)

b, B = (\(\dfrac{6}{25}\) - 1,24): \(\dfrac{3}{7}\): [(3\(\dfrac{1}{2}\) - 3\(\dfrac{2}{3}\)): \(\dfrac{1}{14}\)]

    B = (0,24 - 1,24): \(\dfrac{3}{7}\):[(\(\dfrac{7}{2}\)-\(\dfrac{11}{3}\)): \(\dfrac{1}{14}\)]

    B = -1: \(\dfrac{3}{7}\):[ (-\(\dfrac{1}{6}\) : \(\dfrac{1}{14}\))]

   B  = -1: \(\dfrac{3}{7}\): (- \(\dfrac{7}{3}\))

B = 1 \(\times\) \(\dfrac{7}{3}\) \(\times\) \(\dfrac{3}{7}\)

B = 1

Nguyễn Đức Trí
12 tháng 7 2023 lúc 18:13

\(A=\left(-0,75-\dfrac{1}{4}\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right):\left(-3\right)\)

\(A=\left(-\dfrac{2}{4}-\dfrac{1}{4}\right).\left(-\dfrac{1}{5}\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right).\left(-\dfrac{1}{3}\right)\)

\(A=-\dfrac{3}{4}.\left(-\dfrac{1}{5}\right)+\dfrac{1}{48}-\dfrac{1}{18}\)

\(A=\dfrac{3}{20}+\dfrac{1}{48}-\dfrac{1}{18}=\dfrac{108}{720}+\dfrac{15}{720}-\dfrac{40}{720}=\dfrac{83}{720}\)