a,x4 - 4x2y2 +4y4
b,4x4 + x4y4 + \(\dfrac{y^4}{4}\)
c,4x2 - 4y2 + \(\dfrac{y^4}{x^2}\)
d,\(\dfrac{x^2}{y^2}\)+\(\dfrac{4y^2}{x^2}\)+4
Tìm bậc của các đa thức sau:
A= 6x4-5x2+4x-3x4+2x3 B=-5x3y2+4x2y2-x3+8x2y2+5x3y2
C=\(\dfrac{1}{2}\)x4y4+6x6+\(\dfrac{1}{2}\)x4y4-5x4y3-x4y4 D=3x2y-\(\dfrac{1}{4}\)xy+1-3x2y+\(\dfrac{1}{2}\)xy-\(\dfrac{1}{4}\)xy
A= 6x4-5x2+4x-3x4+2x3
A = 3x4 -5x2 +2x3
Bậc là: 4
B= -5x3y2+4x2y2-x3+8x2y2+5x3y2
B = 12x2y2 -x3
Bậc là : 4
a) (2x + 3y)2
b) (x + \(\dfrac{1}{4}\))2
c) (x2 + \(\dfrac{2}{5}\)y) . (x2 - \(\dfrac{2}{5}\)y)
d) (2x + y2)3
e) (3x2 - 2y)2
f) (x + 4) (x2 - 4x + 16)
g) (x2 - \(\dfrac{1}{3}\)) . (x4 + \(\dfrac{1}{3}\)x2 + \(\dfrac{1}{9}\))
a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)
b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)
c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)
d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)
e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)
f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)
g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)
a : \(\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}\) với y ≥ 0 , y ≠ 0
b : \(\dfrac{5}{2}x^3y^3.\sqrt{\dfrac{16}{x^4y^8}}\)với x,y ≠ 0
c : \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)với a ≥ 0 , b ≠ 0
a) \(\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
b) \(\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{\left(x^2y^4\right)^2}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{20x^3y^3}{2x^2y^4}\)
\(=\dfrac{10x}{y}\)
c) \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)
\(=ab^2\dfrac{\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
\(a,\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\left(y\ge0;x,y\ne0\right)\) (sửa đề)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
\(---\)
\(b,\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\left(x,y\ne0\right)\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{x^4y^8}}\)
\(=\dfrac{5x^3y^3}{2}\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{5x\cdot2}{y}\)
\(=\dfrac{10x}{y}\)
\(---\)
\(c,ab^2\sqrt{\dfrac{3}{a^2b^4}}\left(a>0;b\ne0\right)\) (sửa đề)
\(=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}\)
\(=\dfrac{ab^2\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=\dfrac{ab^2\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
#\(Toru\)
Cho x,y,z>0 sao cho x+y+z=5. Tìm gtnn của A=\(\dfrac{4x}{y^2+4}+\dfrac{4y}{z^2+4}+\dfrac{4z}{x^2+4}\)
Cho x,y,z>0 sao cho x+y+z=5. Tìm gtnn của A=\(\dfrac{4x}{y^2+4}+\dfrac{4y}{z^2+4}+\dfrac{4z}{x^2+4}\)
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\) ( x>= 0; y>=0)
c) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-4}\)
d) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-2}\)
a: \(=\dfrac{\left|x+2\right|}{x-1}\)
b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)
c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
1. a) \(CMR:A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{a}{b}-\dfrac{b}{a}\) ≥ 0
b) Tìm min \(B=\dfrac{a^4}{b^4}+\dfrac{b^4}{a^4}-\dfrac{a^2}{b^2}-\dfrac{b^2}{a^2}+\dfrac{a}{b}+\dfrac{b}{a}\)
2. Cho x,y t/m: \(x^2+y^2=25\)
Tìm max M\(=3x+4y\)
Câu 1:
a, Giả sử \(A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{a}{b}-\dfrac{b}{a}\ge0\)
\(\Leftrightarrow A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge0\)
Mà \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow A\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\cdot\dfrac{a}{b}-2\cdot\dfrac{b}{a}+2\ge0\)
\(\Leftrightarrow\left(\dfrac{a^2}{b^2}-2\cdot\dfrac{a}{b}+1\right)+\left(\dfrac{b^2}{a^2}-2\cdot\dfrac{b}{a}+1\right)\ge0\\ \Leftrightarrow\left(\dfrac{a}{b}-1\right)^2+\left(\dfrac{b}{a}-1\right)^2\ge0\left(\text{luôn đúng}\right)\)
Dấu \("="\Leftrightarrow a=b\)
b, \(B=\dfrac{a^4}{b^4}+\dfrac{b^4}{a^4}-2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\right)+2+\left(\dfrac{a^2}{b^2}+2+\dfrac{b^2}{a^2}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-4\)
\(B=\left(\dfrac{a^4}{b^4}-2\cdot\dfrac{a^2}{b^2}+1\right)+\left(\dfrac{b^4}{a^4}-2\cdot\dfrac{b^2}{a^2}+1\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-2\\ \Leftrightarrow B=\left(\dfrac{a^2}{b^2}-1\right)^2+\left(\dfrac{b^2}{a^2}-1\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\dfrac{a}{b}+\dfrac{b}{a}-4\\ \Leftrightarrow B\ge0+0+0+\dfrac{a^2+b^2}{ab}-4\ge\dfrac{2ab}{ab}-4=2-4=-2\)
Dấu \("="\Leftrightarrow\left(a;b\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)
Câu 2:
\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=M^2\\ \Leftrightarrow M^2\le25\cdot25\\ \Leftrightarrow M\le25\)
Dấu \("="\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{25}{25}=1\Leftrightarrow\left\{{}\begin{matrix}x^2=9\\y^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy \(M_{max}=25\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)
Gpt: \(x^4-3x^2-10x-4=0\)
Làm kiểu này được không ạ:
\(ax^4+bx^2+cx+d=0\\ \Leftrightarrow x^4+\dfrac{b}{a}x^2+\dfrac{c}{a}x+\dfrac{d}{a}=0\\ \Leftrightarrow\left(x^4+2yx^2+y^2\right)-2yx^2-y^2+\dfrac{b}{a}x^2+\dfrac{c}{a}x+\dfrac{d}{a}=0\\ \Leftrightarrow\left(x^2+2y\right)^2+x^2.\left(\dfrac{b}{a}-2y\right)+\dfrac{c}{a}x+\dfrac{d}{a}-y^2=0\)
Ta tìm y: \(x^2.\left(\dfrac{b}{a}-2y\right)+\dfrac{c}{a}x+\dfrac{d}{a}-y^2\\ =m\left(gx+h\right)^2\)
Thực hiện các phép tính với các phân thức sau:
a) \(\dfrac{4a^2-3a+5}{a^3-1}-\dfrac{1-2a}{a^2+a+1}-\dfrac{6}{a-1}\)
b) \(\dfrac{5}{a+1}-\dfrac{10}{a-\left(a^2+1\right)}-\dfrac{15}{a^3+1}\)
c) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
d) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
e) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
f) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
a: \(=\dfrac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{6a^2+6a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{4a^2-3a+5+2a^2-3a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{-12a}{\left(a-1\right)\left(a^2+a+1\right)}\)
b: \(=\dfrac{5}{a+1}+\dfrac{10}{a^2-a+1}-\dfrac{15}{\left(a+1\right)\left(a^2-a+1\right)}\)
\(=\dfrac{5a^2-5a+5+10a+10-15}{\left(a+1\right)\left(a^2-a+1\right)}\)
\(=\dfrac{5a^2+5a}{\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{5a}{a^2-a+1}\)