Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
tth_new
14 tháng 6 2019 lúc 14:22

11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.

Dấu "=" xảy ra khi a= b=c

tth_new
14 tháng 6 2019 lúc 16:35

Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!

9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)

\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)

"=" <=> a = b = c = 1.

Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)

tth_new
14 tháng 6 2019 lúc 14:19

10/Thêm \(\frac{b}{a}-2\) ở mỗi vế ta cần chứng minh:

\(\frac{\left(a-b\right)^2}{ab}+\frac{b}{c}\ge\frac{4a}{a+c}+\frac{b}{a}-2\) (vận dùng đẳng thức \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\))

\(\Leftrightarrow\frac{c\left(a-b\right)^2+ab^2}{abc}\ge\frac{4a^2+ab+bc-2a\left(a+c\right)}{a\left(a+c\right)}\)

\(\Leftrightarrow\frac{c\left(a-b\right)^2+ab^2}{abc}\ge\frac{2a^2+a\left(b-c\right)+c\left(b-a\right)}{a\left(a+c\right)}\)

\(\Leftrightarrow\frac{\left(c\left(a-b\right)^2+ab^2\right)\left(a+c\right)}{abc\left(a+c\right)}-\frac{\left(2a^2+a\left(b-c\right)+c\left(b-a\right)\right)bc}{abc\left(a+c\right)}\ge0\)

Em làm tắt tiếp:v

\(\Leftrightarrow\frac{a\left(ac^2+b^2c+ca^2+ab^2-4abc\right)}{abc\left(a+c\right)}\ge0\)\(\Leftrightarrow\frac{\left(ac^2+b^2c+ca^2+ab^2-4abc\right)}{bc\left(a+c\right)}\ge0\)

Áp dụng BĐT AM-GM ta được: \(VT\ge\frac{4\sqrt[4]{\left(abc\right)^4}-4abc}{bc\left(a+c\right)}=\frac{0}{bc\left(a+c\right)}=0\)

Ta có Q.E.D. 

P/s: Đúng không ta? Mà sao có người tk sai nhỉ?

⭐Hannie⭐
Xem chi tiết
? 12Yo.Sh00t3r
25 tháng 6 2023 lúc 21:09

Áp dụng bất đẳng thức Cô si cho hai số dương ta có:

(a2 + b2) + (b2 + c2) + (c2 + a2) ≥ 2ab + 2bc + 2ca

=> 2(a2 + b2 + c2 ) ≥ 2 (ab + bc + ca) (1) (a2 + 1) + (b2 + c2) + (c2 + a2) ≥ 2a + 2b + 2c

=> a2 + b2 + c2 + 3 ≥ 2(a + b + c) (2)

Cộng các vế của (1) và (2) ta có:

3 ( a2 + b2 + c2 ) + 3 ≥ 2 (ab + bc + ca + a + b + c)

=> 3( a2 + b2 + c2 ) + 3 ≥ 12 => a2 + b2 + c2 ≥ 3.

Ta có: (a^3/b + ab ) + ( b^3/c + bc ) + ( c^3/a + ca)≥ 2(a2 + b2 + c2) (CÔ SI) 

<=>a^3/b + b^3/c + c^3/a +ab + bc + ac  ≥ 2(a2 + b2 + c2)

Vì a2 + b2 + c2 ≥ ab + bc + ca => a^3 + b^3 + c^3 ≥ a2 + b2 + c2 ≥ 3 (đpcm).

T . Anhh
25 tháng 6 2023 lúc 21:11

Áp dụng bất đẳng thức cô-si cho hai số dương ta có:

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (1)

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2a+2b+2c\)

\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) (2)

Cộng (1) với (2)

\(3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Ta có: \(\left(\dfrac{a^3}{b}+ab\right)+\left(\dfrac{b^3}{c}+bc\right)+\left(\dfrac{c^3}{a}+ca\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\)

Vì \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\ge3\) (đpcm).

Phùng Công Anh
25 tháng 6 2023 lúc 21:21

Xét BĐT phụ: `a^2+b^2+c^2>=ab+bc+ca(**)`

`BĐT(**)<=>1/2[(a-b)^2+(b-c)^2+(c-a)^2]>=0AAa;b;c` xảy ra dấu "=" khi `a=b=c`

Từ `BĐT(**)` cộng hai vế với `2(ab+bc+ca)` ta có `(a+b+c)^2>=3(ab+bc+ca)<=>(a+b+c)^2/3>=ab+bc+ca`

-----

Ta có `6=a+b+c+ab+bc+ca<=a+b+c+(a+b+c)^2/3=t^2/3+t(t=a+b+c>0)`

`=>t^2/3+t-6>=0=>t>=3` hay `a+b+c>=3`

Áp dụng BĐT Cauchy-Schwarz ta có:

`a^3/b+b^3/c+c^3/a=a^4/(a)+b^4/(bc)+c^4/ca>=(a^2+b^2+c^2)/(ab+bc+ca)>=a^2+b^2+c^2>=(a+b+c)^2/3=3`

Khiêm Nguyễn Gia
Xem chi tiết
Phan Thanh Tâm
Xem chi tiết
quang08
31 tháng 8 2021 lúc 9:16

Tham Khao

a) Áp dụng BĐT AM-GM ta có:
(a + b) ≥ 2√ab
(b + c) ≥ 2√bc
(c + a) ≥ 2√ca
Vì a,b,c > 0 nên nhân vế với vế 3 BĐT trên ta được:
(a + b)(b + c)(c + a) ≥ 8√a^2b^2c^2 =8abc (đpcm)
Dấu = xảy ra <=> a=b=c

Emilia Nguyen
Xem chi tiết
Nhã Doanh
8 tháng 4 2018 lúc 16:09

có vấn đề-.-

Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a, b)

Vậy \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

Big City Boy
Xem chi tiết
ILoveMath
16 tháng 11 2021 lúc 10:15

Tham khảo: https://lazi.vn/edu/exercise/cho-a-b-c-la-cac-so-duong-thoa-man-a2-2b2-3c2-chung-minh-1-a-2-b-3-c

Nguyễn Trọng Cương
Xem chi tiết
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2021 lúc 12:32

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)

\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)