Cho ABC và các đường cao AD, BE, CF trực tâm H. Cho
a) Tính
b) Chứng minh AH = BC.
c) Gọi I là trung điểm của BC. Tính.
Cho tam giác ABC nhọn các đường cao AD , BE ,CF trực tâm H . Gọi M là trung điểm cùa BC , K là điểm đối xứng với H qua M .a) CM : H đối xứng với K qua M b) tính AH/AD + BH/BE +CH/CF
Bài 3. Cho tam giác ABC, các đường cao AD, BE, CF, trực tâm H. Gọi O là giao điểm ba đường trung trực. Gọi I là trung điểm AH. Qua 1 kẻ đường thẳng vuông góc với OI, cắt AB,AC tại K, L. a) Gọi M là trung điểm của BC, chứng minh AH = 2OM b) Chung minh MH vuông góc KL . c) Chứng minh AHCM đồng dạng với AKAI, từ đó suy ra IK = IL Giúp mình càng nhanh càng tốt ạ mình cần trong 10 p nữa ạ
Bài 3. Cho tam giác ABC, các đường cao AD, BE, CF, trực tâm H. Gọi O là giao điểm ba đường trung trực. Gọi I là trung điểm AH. Qua 1 kẻ đường thẳng vuông góc với OI, cắt AB,AC tại K, L. a) Gọi M là trung điểm của BC, chứng minh AH = 2OM b) Chung minh MH vuông góc KL . c) Chứng minh AHCM đồng dạng với AKAI, từ đó suy ra IK = IL
a: Kẻ AN là đường kính của (O)
góc ABN=1/2*180=90 độ
=>BN//CH
góc ACN=1/2*180=90 độ
=>CH//BN
=>BHCN là hình bình hành
=>M là trung điểm của HN
Xét ΔAHN có NM/NH=NO/NA
nên OM//AH và OM=AH/2
=>AH=2OM
c: ΔOKL cân tại O
mà OI là đường cao
nên I là trung điểm của KL
Cho Tam giác ABC ( AB<AC), BC=a. AD,BE,CF là 3 đường cao, H là trực tâm a) Chứng minh rằng tam giác BHA đồng dạng tam giác BFE và góc DEF=2BAD b)gọi K là giao điểm của AD,EF. Tính (AK*HD)/(AD*KH) c)Tìm vị trí của D trên BC để HD*AD đạt giá trị lớn nhất d)Lấy i là trung điểm của AH. Chứng minh rằng K là trực tâm của tam giác IBC
Cho tam giác ABC, các đường cao AD, BE và CF. Gọi H là trực tâm của tam giác.
a) Chứng minh 4 điểm A,E,H,F cùng nằm trên 1 đường tròn xác định tâm I.
b) gọi O là trung điểm BC. Chứng minh OE là tiếp điểm của đường tròn (I).
Cho tam giác ABC, các đường cao AD,BE,CF. Gọi H là trực tam của tam giác.
a) Chứng minh A, E, H, F cùng nằm trên một đường tròn xác định tâm I.
b) Gọi O là trung điểm BC. Chứng minh OE là tiếp tuyến đường tròn tâm I.
\(OE=OB=\dfrac{1}{2}BC\Rightarrow\widehat{OBE}=\widehat{OEB}\)
\(\widehat{AHE}=\widehat{BHO}\) ; \(\widehat{BHO}+\widehat{HBD}=90^0\)
\(\Rightarrow\widehat{AHE}+\widehat{HBD}\left(\widehat{OBE}\right)=90^0\)
\(\Rightarrow\widehat{AHE}+\widehat{OEB}=90^0\)
\(IE=IH=r\Rightarrow\widehat{AHE}=\widehat{IEH}\)
\(\Rightarrow\widehat{IEH}+\widehat{OEB}=90^0\Rightarrow IE\perp OE\)
Cho tam giác ABC, các đường cao AD,BE và CF. Gọi H là trực tâm
a) Chứng minh 4 điểm A,E,H,F cùng thuộc 1 đường tròn, Gọi I là tâm của đường tròn đó, hãy xác định I
b) Gọi O là trung điểm BC, chứng minh OE là tiếp tuyến của (I)
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
Tâm I là trung điểm của AH
a) Ta có: \(\widehat{BFC}=90^0\)(\(CF\perp AB\))
nên F nằm trên đường tròn đường kính BC(Định lí)(1)
Ta có: \(\widehat{BEC}=90^0\left(BE\perp AC\right)\)
nên E nằm trên đường tròn đường kính BC(Định lí)(2)
Từ (1) và (2) suy ra E và F cùng nằm trên đường tròn đường kính BC
mà B,C cùng nằm trên đường tròn đường kính BC
nên E,F,B,C cùng thuộc đường tròn đường kính BC
hay BFEC là tứ giác nội tiếp(đpcm)
cho tam giác ABC có các đường cao AD, BE, CF và trực tâm H . Gọi I, M, N theo thứ tự là trung điểm của AB, BC, AC. Gọi P, Q, R là trung điểm của BH,CH,AH. chứng minh 9 điểm:I,F,P,D,M,Q,N,E,R cùng thuộc một đường tròn