ho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H. Gọi I là giao điểm của ba đường trung trực của tam giác ABC. Kẻ IM vuông góc BC tại M. Lấy điểm K đối xứng với A qua I
a) CM: góc ACK = 90 độ
b) CM: AH = 2.IM
c) CM: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}=2\)
Cho tam giác ABC nhọn với 3 đường cao AD,BE,CF cắt nhau tại H. Gọi M là trung điểm của BC và K đối xứng với H qua M.
a. BHCK là hình gì?
b. Gọi O và I lần lượt là trung điểm của AK và AH, chứng minh IM là trung trực của FE , từ đó suy ra AK vuông góc với FE?
c. Qua O kẻ đường thẳng song song với BC cắt AC tại T. Chứng minh rằng góc BIT vuông?
Bài 4:Cho ABC nhọn (AB < AC). Các đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M
a)Chứng minh tứ giác BHCK là hình bình hành.
b)Chứng minh BK ⊥AB
c)Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân.
d)BK cắt HI tại G. Tìm điều kiện của ABC để tứ giác HGKC là hình thang cân.
Cho tam giác ABC có các góc đều nhọn và Â = 60*,các đường cao AD và BE cắt nhau tại H.
a) Gọi K là điểm đối xứng với H qua AC. Tính góc ACK
b) Gọi L là điểm đối xứng với H qua BC. Tính góc BLC
c) Đường thẳng d đi qua trung điểm M của CH và trung điểm N của AB. Chứng minh: d là trục đối xứng của DE
cho tam giác abc nhọn ( ab< ac) , các đường cao ad , be ,cf của tam giác abc cắt nhau tại h
a) chứng minh ae . ac = af. ab và tam giác abc dồng dạng với tam giác aef
b) gọi k là điểm đối xứng với h qua m của bc chứng minh ak vuông góc với ef
c) gọi n là giao điểm cảu bc và ef chứng minh 1/nb +1/nc =2/nd
Cho tam giác ABC, các đường trung tuyến AD, BE, CF cắt nhau tại G. Gọi H là điểm đối xứng với G qua D, I là điểm đối xứng với G qua E, K là điểm đối xứng với G qua F. Tìm các điểm đối xứng với A, với B, với C qua G.
Bài 1: Cho tam giác ABC có 3 góc nhọn và AB < AC . Các đường cao BE , CF cắt nhau tại H . Gọi M là trung điểm của BC . K là điểm đối xứng vói H qua M.
a) Biết AB= 4cm và CF= 6cm. Tính diện tích tam giác ABC?
b) Chứng minh : BHCK là hình bình hành
b) Chứng minh : BK vuông góc AB và CK vuông góc AC
c) Gọi I là điểm đối xứng với H qua BC . Chứng minh : BIKC là hình thang cân
d) BK cắt HI tại G , tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân
Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tai H. M, N, P lần lượt là các điểm đối xứng của H qua BC, AC và AB . TÍnh AM/AD + BN/BE + CP/CF
Cho tam giác ABC nhọn (AB < AC). Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS = NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng AI tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC