(x+9)/10+(x+10)/9=9/(x+10)+10/(x+9)
(x+9)/10+( x + 10)/9 = 9/( x + 10 )+ 10/( x + 9)
Những lần sau cố gắng đặt câu hỏi dưới dạng công thức nhé!
Lời giải:
ĐK: \(x\ne-10;x\ne-9\)
Phương trình tương đương:
\(9\left(x+10\right)\left(x+9\right)^2+10\left(x+9\right)\left(x+10\right)^2=810\left(x+9\right)+900\left(x+10\right)\\ \Leftrightarrow\left(x+10\right)\left(x+9\right)\left[9\left(x+9\right)+10\left(x+10\right)\right]=90\left[9\left(x+9\right)+10\left(x+10\right)\right]\\ \Leftrightarrow\left[\left(x+10\right)\left(x+9\right)-90\right].\left[9\left(x+9\right)+10\left(x+10\right)\right]=0\\ \Leftrightarrow\left(x^2+19x\right)\left(19x+181\right)=0\)
\( \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 19\\ x = - \dfrac{{181}}{{19}} \end{array} \right.\left( {tm} \right)\)
( x + 10 ) / 9 + ( x + 9 ) / 10 = 9 / ( x + 10 ) + 10 / ( x + 9 ) giải phương trình này giúp mình với
( x + 10 ) / 9 + ( x + 9 ) / 10 = 9 / ( x + 10 ) + 10 / ( x + 9 ) giải phương trình này giúp mình với
cộng 1 vào từng phân thức để tử là x+19
nên x=-19
\(\dfrac{x+9}{10}+\dfrac{x+10}{9}=\dfrac{9}{x+10}+\dfrac{10}{x+9}\)
\(\Leftrightarrow\dfrac{x+9}{10}+1+\dfrac{x+10}{9}+1=\dfrac{9}{x+10}+1+\dfrac{10}{x+9}+1\)
\(\Leftrightarrow\dfrac{x+19}{10}+\dfrac{x+19}{9}=\dfrac{x+19}{x+10}+\dfrac{x+19}{x+9}\)
\(\Leftrightarrow\left(x+9\right)\left(\dfrac{1}{10}+\dfrac{1}{9}-\dfrac{1}{x+10}-\dfrac{1}{x+9}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+9=0\\\dfrac{1}{10}+\dfrac{1}{9}-\dfrac{1}{x+10}-\dfrac{1}{x+9}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-9\\x=0\end{matrix}\right.\)
Bạn nhớ ĐKXĐ
Tính nhẩm :
9 x 2 =
9 x 5 =
9 x 8 =
9 x 10 =
2 x 9 =
5 x 9 =
8 x 9 =
10 x 9 =
9 x 2 = 18
9 x 5 = 45
9 x 8 = 72
9 x 10 = 90
2 x 9 = 18
5 x 9 = 45
8 x 9 = 72
10 x 9 = 90
Giải phương trình \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\Leftrightarrow\frac{9\left(X+9\right)\left(X+9\right)\left(X+10\right)+10\left(X+10\right)\left(X+10\right)\left(X+9\right)}{90\left(X+10\right)\left(X+9\right)}=\frac{9.90\left(X+9\right)+10.90\left(X+10\right)}{90\left(X+10\right)\left(X+9\right)}\)
\(\Rightarrow9\left(X+9\right)^2\left(X+10\right)+10\left(X+10\right)^2\left(X+9\right)=810\left(X+9\right)+900\left(X+10\right)\)
\(\Leftrightarrow\left(9X+90\right)\left(X^2+18X+81\right)+\left(10X+90\right)\left(X^2+20X+100\right)=810X+7290+900X+9000\)
\(\Leftrightarrow\)9X3+162X2+729X+90X2+1620X+7290+10X3+200X2+1000X+90X2+1800X+9000=1710X+16290
\(\Leftrightarrow\)19X3+542X2+5149X+16290=1710X+16290
\(\Leftrightarrow\)19X3+542X2=16290-16290+1710X-5149X
\(\Leftrightarrow\)19X3+542X2=-3439X
\(\Leftrightarrow\)19X3+542X2+3439X=0
RỒI GIẢI TIẾP
Mk nghĩ nên giải theo cách này thì hay hơn ( mk mớp 7 thui nên bài làm mang tính chất tham khảo nhé )
Ta có :
\(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\Leftrightarrow\)\(\left(\frac{x+9}{10}+1\right)+\left(\frac{x+10}{9}+1\right)=\left(\frac{9}{x+10}+1\right)+\left(\frac{10}{x+9}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+19}{10}+\frac{x+19}{9}=\frac{x+19}{x+10}+\frac{x+19}{x+9}\)
\(\Leftrightarrow\)\(\frac{x+19}{10}+\frac{x+19}{9}-\frac{x+19}{x+10}-\frac{x+19}{x+9}=0\)
\(\Leftrightarrow\)\(\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\right)=0\)
Xét trường hợp \(x=0\)
\(\Rightarrow\)\(\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\right)=\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{10}-\frac{1}{9}\right)=\left(x+19\right).0=0\)
( NHẬN )
\(\Rightarrow\) Nếu \(x\ne0\) thì \(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\ne0\)
Xét trường hợp x nguyên dương ta có :
\(\frac{1}{10}>\frac{1}{x+10}\)
\(\frac{1}{9}>\frac{1}{x+9}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}>0\)
Xét trường hợp x nguyên âm ta có :
\(\frac{1}{10}< \frac{1}{x+10}\)
\(\frac{1}{9}< \frac{1}{x+9}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+9}-\frac{1}{x+10}< 0\)
Từ đó suy ra :
\(x+19=0\)
\(\Rightarrow\)\(x=-19\)
Vậy \(x=0\) hoặc \(x=-19\)
Giải phương trình \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
Giải phương trình: \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
ĐKXĐ: x≠-10; x≠-9
Ta có: \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{10}{x+9}+\frac{9}{x+10}\)
Vậy: x=0
Tính bằng cách thuận tiện
a. 5/7 x 5/9 + 4/9 x 5/7
b. 1/10 + 5/9 + 4/9 + 9/10 – 1
c. 5/7 x 5/9 + 4/9 x 5/7 + 2/7
d. 2/7 + 2/8 + 1/4 + 1/7 + 4/7
e. 4/5 + 3/10 + 2/10 + 0,7
f. 326 x 728 + 326 x 272
a) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\)
\(=\dfrac{5}{7}\times1\)
\(=\dfrac{5}{7}\)
b) \(\dfrac{1}{10}+\dfrac{5}{9}+\dfrac{4}{9}+\dfrac{9}{10}-1\)
\(=\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(\dfrac{1}{10}+\dfrac{9}{10}-1\right)\)
\(=1+0\)
\(=1\)
c) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}+\dfrac{2}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\dfrac{2}{7}\)
\(=\dfrac{5}{7}+\dfrac{2}{7}\)
\(=1\)
d) \(\dfrac{2}{7}+\dfrac{2}{8}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{4}{7}\)
\(=\left(\dfrac{2}{8}+\dfrac{1}{4}\right)+\left(\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{4}{7}\right)\)
\(=\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+1\)
\(=\dfrac{1}{2}+1\)
\(=\dfrac{3}{2}\)
e) \(\dfrac{4}{5}+\dfrac{3}{10}+\dfrac{2}{10}+0,7\)
\(=\dfrac{4}{5}+\dfrac{5}{10}+\dfrac{7}{10}\)
\(=\dfrac{4}{5}+\dfrac{12}{10}\)
\(=\dfrac{4}{5}+\dfrac{6}{5}\)
\(=\dfrac{10}{5}\)
\(=2\)
g) \(362\times728+326\times272\)
\(=326\times\left(728+272\right)\)
\(=326\times1000\)
\(=326000\)