Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thanh Trà
Xem chi tiết
Ngọc Vĩ
20 tháng 5 2016 lúc 23:07

\(x\sqrt{5-4x}=3x^2-7x+5\) \(\Leftrightarrow\sqrt{5-4x}=3x-7+\frac{5}{x}\) \(\Leftrightarrow5-4x=\left(3x-7+\frac{5}{x}\right)^2\)

Tới đây bạn tự giải tiếp

Võ Đông Anh Tuấn
21 tháng 5 2016 lúc 8:27

\(x\sqrt{5-4x}=3x^2-7x+5\left(DK:x\le\frac{5}{4}\right)\)

\(\Leftrightarrow2x\sqrt{5-4x}=6x^2-14x+10\)

\(\Leftrightarrow-\left(5-4x\right)+2x\sqrt{5-4x}-x^2=5x^2-10x+5\)

\(\Leftrightarrow-\left(\sqrt{5-4x}-x\right)^2=5\left(x-1\right)^2\)

Vì \(VT\le0;VP\ge0\Rightarrow\)Phương trình có ngiệm khi VT=VP=0

\(\Leftrightarrow\begin{cases}\sqrt{5-4x}-x=0\\\left(x-1\right)^2=0\end{cases}\Rightarrow}x=1\left(TM\right)\)Vậy PT có một nghiemj duy nhất x=1

 

Đạt Tuấn Phan
Xem chi tiết
HIẾU 10A1
12 tháng 3 2021 lúc 7:19

Đề bài thiếu bạn ạ

biii
Xem chi tiết
Nguyễn Trọng Chiến
21 tháng 3 2021 lúc 21:12

ĐKXĐ: \(x\ge\dfrac{2}{3}\)

Đặt a\(=\sqrt{4x+1};b=\sqrt{3x-2}\left(a\ge\sqrt{\dfrac{11}{3}};b\ge0\right)\)

\(\Rightarrow a^2-b^2=x+3\)

\(\Rightarrow5a=5b+a^2-b^2\Leftrightarrow5\left(a-b\right)+\left(a-b\right)\left(a+b\right)=0\Leftrightarrow\left(a-b\right)\left(a+b+5\right)=0\Leftrightarrow a-b=0\) vì \(a+b+5\ge\sqrt{\dfrac{11}{3}}+5>0\)

\(\Leftrightarrow a=b\Leftrightarrow\sqrt{4x+1}=\sqrt{3x-2}\Rightarrow4x+1=3x-2\Leftrightarrow x=-3\) (L)

Vậy pt vô nghiệm

Nguyễn Việt Lâm
22 tháng 3 2021 lúc 5:46

ĐKXĐ: \(x\ge\dfrac{2}{3}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x+1}=a>0\\\sqrt{3x-2}=b\ge0\end{matrix}\right.\) ta được:

\(5a=5b+a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-5\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+1}=\sqrt{3x-2}\\\sqrt{4x+1}+\sqrt{3x-2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(ktm\right)\\\sqrt{4x+1}-3+\sqrt{3x-2}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)=0\)

\(\Leftrightarrow x=2\)

Tô Mì
Xem chi tiết
Lê Anh Khoa
29 tháng 3 2022 lúc 14:11

1.   3x( x - 2 ) - ( x - 2 ) = 0

<=> ( x-2).(3x-1)  = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)

2.    x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )

<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0

(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )

\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

Aliza Hime
29 tháng 3 2022 lúc 14:18

\(1. 3x^2 - 7x +2=0\)

=>\(Δ=(-7)^2 - 4.3.2\)

        \(= 49-24 = 25\)

Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:

\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)

\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)

 

  

Hoa Phương
Xem chi tiết
tthnew
17 tháng 1 2021 lúc 13:59

ĐKXĐ: \(x\ge\dfrac{1}{3}\)

PT \(\Leftrightarrow2\left(x-\sqrt{3x-1}\right)+\left[\left(2x+1\right)-\sqrt{3x^2+7x}\right]=0\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+1\right)}{x+\sqrt{3x-1}}+\dfrac{\left(2x+1\right)^2-\left(3x^2+7x\right)}{2x+1+\sqrt{3x^2+7x}}=0\)

\(\Leftrightarrow\left(x^2-3x+1\right)\left[\dfrac{2}{x+\sqrt{3x-1}}+\dfrac{1}{2x+1+\sqrt{3x^2+7x}}\right]=0\)

Cái ngoặc to vô nghiệm, đến đây bạn có thể giải.

Loanmang Nguyen Thi Loan
Xem chi tiết
Nguyễn Phương Thảo
1 tháng 12 2019 lúc 20:12

Đặt: \(\sqrt[3]{3x-1}=a;\sqrt[3]{4x-1}=b\)

\(\Rightarrow\sqrt[3]{12x^2-7x+1}=\sqrt[3]{\left(3x-1\right)\left(4x-1\right)}=ab\)

Phương trình có dạng :

 \(2a^2+3b^2=5ab\Leftrightarrow2a^2-5ab+3b^2=0\)

\(\Leftrightarrow2a^2-2ab-3ab+3b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\2a=3b\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt[3]{3x-1}=\sqrt[3]{4x-1}\\2\sqrt[3]{3x-1}=3\sqrt[3]{4x-1}\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=4x-1\\8\left(3x-1\right)=27\left(4x-1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{19}{84}\end{cases}}}\)

Khách vãng lai đã xóa
Tú Thanh Hà
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
3 tháng 2 2021 lúc 22:07

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

Đào Thu Hiền
3 tháng 2 2021 lúc 22:47

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

Akai Haruma
4 tháng 2 2021 lúc 1:17

Bài 1:

ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$

$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$

Coi đây là PT bậc 2 ẩn $x$

$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:

$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:

$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$

Trúc Mai Huỳnh
Xem chi tiết
Big City Boy
Xem chi tiết
mẹ bạn hóa trị II
14 tháng 5 2022 lúc 21:53

🍀thiên lam🍀
14 tháng 5 2022 lúc 22:29

Điều kiện xác định: \(\left\{{}\begin{matrix}5x^2+4x\ge0\\x^2-3x-18\ge0\\x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(5x+4\right)\ge0\\\left(x-6\right)\left(x+3\right)\ge0\\x\ge0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge0\\x\le\dfrac{-4}{5}\end{matrix}\right.\\\left[{}\begin{matrix}x\ge6\\x\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x\ge6\) (*)

Khi đó phương trình \(\Leftrightarrow\) \(\sqrt{5x^2+4x}=\sqrt{x^2-3x-18}+5\sqrt{x}\)

         \(\Leftrightarrow5x^2+4x=x^2+22x-18+10\sqrt{x\left(x^2-3x-18\right)}\\ \Leftrightarrow4x^2-18x+18=10\sqrt{x\left(x^2-3x-18\right)}\\ \Leftrightarrow5\sqrt{x\left(x-6\right)\left(x+3\right)}=2x^2-9x+9\\ \Leftrightarrow5\sqrt{\left(x^2-6x\right)\left(x+3\right)}=2\left(x^2-6x\right)+3\left(x+3\right)\left(1\right)\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2-6x}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\)

Khi đó pt \(\left(1\right)\) trở thành: \(2a^2+3b^2-5ab=0\\ \Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)

- TH1: \(a=b\Rightarrow x^2-6x=x+3\Leftrightarrow x^2-7x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{7+\sqrt{61}}{2}\left(tm\right)\\\dfrac{7-\sqrt{61}}{2}\left(ktm\right)\end{matrix}\right.\)

-TH2: \(2a=3b\Leftrightarrow4a^2=9b^2\\ \Leftrightarrow4\left(x^2-6x\right)=9\left(x+3\right)\\ \Leftrightarrow4x^2-33x-27=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9\left(tm\right)\\x=\dfrac{-3}{4}\left(ktm\right)\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=\dfrac{7+\sqrt{61}}{2};x=9\)