Cho ΔABC đều, D là trung điểm của BC. Gọi E, F lần lượt là hai điểm di động trên AB, AC sao cho \(\widehat{EDF}=60^o\)
a) Chứng minh rằng: tích \(BE.CF\) không đổi
b) Gọi (C) là đường tròn tâm D tiếp xúc với AB
Chứng minh rằng: EF tiếp xúc với (C)
c) Đường thẳng (△) đối xứng với AB qua CD, (△) cắt EF tại H. Gọi K là điểm đối xứng của F qua D. Chứng minh rằng: H, B, K thẳng hàng và \(\widehat{HDE}\)luôn không đổi
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)