Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phú An Hồ Phạm
Xem chi tiết
Lã Thành Hoan
Xem chi tiết
THỊ QUYÊN BÙI
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 11 2021 lúc 13:01

ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

- Với \(x< -1\Rightarrow x+\dfrac{x}{\sqrt{x^2-1}}< 0\) pt vô nghiệm

- Xét với \(x>1\):

Bình phương 2 vế của pt đã cho:

\(x^2+\dfrac{x^2}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}=\dfrac{1225}{144}\)

\(\Leftrightarrow\dfrac{x^4}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}-\dfrac{1225}{144}=0\)

Đặt \(\dfrac{x^2}{\sqrt{x^2-1}}=t>0\)

\(\Rightarrow t^2+2t-\dfrac{1225}{144}=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{25}{12}\\t=-\dfrac{49}{12}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^2}{\sqrt{x^2-1}}=\dfrac{25}{12}\)

Tới đây có thể bình phương 2 vế hoặc đặt \(\sqrt{x^2-1}=a\Rightarrow x^2=a^2+1\) đưa về pt bậc 2:

\(\dfrac{a^2+1}{a}=\dfrac{25}{12}\Leftrightarrow a^2-\dfrac{25}{12}a+1=0\) \(\Rightarrow a=...\Rightarrow x=...\)

Lê Minh Thuận
Xem chi tiết

\(\text{Δ}=\left[-2\left(m-2\right)\right]^2-4\cdot1\cdot\left(3m-3\right)\)

\(=\left(2m-4\right)^2-4\left(3m-3\right)\)

\(=4m^2-16m+16-12m+12\)

\(=4m^2-28m+28\)

Để phương trình có hai nghiệm thì Δ>=0

=>\(4m^2-28m+28>=0\)

\(\Leftrightarrow4m^2-2\cdot2m\cdot7+49-21>=0\)

=>\(\left(2m-7\right)^2>=21\)

=>\(\left[{}\begin{matrix}2m-7>=\sqrt{21}\\2m-7< =-\sqrt{21}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>=\dfrac{7+\sqrt{21}}{2}\\m< =\dfrac{7-\sqrt{21}}{2}\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=6\)

=>\(\left(\left|x_1\right|-\left|x_2\right|\right)^2=36\)

=>\(x_1^2+x_2^2-2\left|x_1x_2\right|=36\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)

=>\(\left(-2m+4\right)^2-2\left(3m-3\right)-2\left|3m-3\right|=36\)

=>\(4m^2-16m+16-6m+6-6\left|m-1\right|=36\)

=>\(4m^2-22m+22-36=6\left|m-1\right|\)

=>\(6\left|m-1\right|=4m^2-22m-14\)(1)

TH1: m>=1

(1) tương đương với \(4m^2-22m-14=6\left(m-1\right)\)

=>\(4m^2-22m-14-6m+6=0\)

=>\(4m^2-28m-8=0\)

=>\(m^2-7m-2=0\)

=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{2}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{2}\left(loại\right)\end{matrix}\right.\)

TH2: m<1

(1) tương đương với: \(4m^2-22m-14=6\left(1-m\right)\)

=>\(4m^2-22m-14=6-6m\)

=>\(4m^2-16m-20=0\)

=>m^2-4m-5=0

=>(m-5)(m+1)=0

=>\(\left[{}\begin{matrix}m-5=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

Serena Nấm Nhỏ
Xem chi tiết
Nguyễn Ngọc Lộc
7 tháng 6 2020 lúc 13:27

a, Dễ quá bỏ qua .

b, Ta có : \(x^2-2\left(m+1\right)x+4m=0\)

=> \(\Delta^,=b^{,2}-ac=\left(m+1\right)^2-4m=m^2+2m+1-4m\)

=> \(\Delta^,=m^2-2m+1=\left(m-1\right)^2\ge0\)

Nên phương trình có 2 nghiệm .

- Theo vi ét có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=4m\end{matrix}\right.\)

- Để \(\left(x_1+3\right)\left(x_2+3\right)=3m^2+12\)

<=> \(x_1x_2+3x_1+3x_2+9=3m^2+12\)

<=> \(x_1x_2+3\left(x_1+x_2\right)+9=3m^2+12\)

<=> \(4m+6\left(m+1\right)+9=3m^2+12\)

<=> \(3m^2-10m-3=0\)

<=> \(\left[{}\begin{matrix}m=\frac{5-\sqrt{34}}{3}\\m=\frac{5+\sqrt{34}}{3}\end{matrix}\right.\)

Vậy ........

Nguyên Thu
Xem chi tiết
Thành Trương
2 tháng 7 2018 lúc 10:28

Hỏi đáp Toán

Phạm Quang Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 6 2019 lúc 20:16

\(x^4-4x^3-5x^2-3x^2+12x+15=0\)

\(\Leftrightarrow x^2\left(x^2-4x-5\right)-3\left(x^2-4x-5\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2-4x-5\right)=0\)

Trần Thanh Phương
21 tháng 6 2019 lúc 20:17

\(x^4-4x^3-8x^2+12x+15=0\)

\(\Leftrightarrow x^4+x^3-5x^3-5x^2-3x^2-3x+15x+15=0\)

\(\Leftrightarrow x^3\left(x+1\right)-5x^2\left(x+1\right)-3x\left(x+1\right)+15\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-5x^2-3x+15\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-5\right)-3\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\\x=\pm\sqrt{3}\end{matrix}\right.\)

Vũ Huy Hoàng
21 tháng 6 2019 lúc 21:49

Phân tích thành nhân tử ta được:

\(\left(x+1\right)\left(x-5\right)\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)

Vậy \(\left[{}\begin{matrix}x=-1\\x=5\\x=\pm\sqrt{3}\end{matrix}\right.\)

Ly Po
Xem chi tiết
Akai Haruma
1 tháng 12 2018 lúc 0:19

Lời giải:

Trước tiên để PT có 2 nghiệm phân biệt thì:

\(\Delta'=m^2-(m^2-2m+1)>0\Leftrightarrow 2m-1>0\Leftrightarrow m> \frac{1}{2}(*)\)

Theo định lý Vi-et, với $x_1,x_2$ là 2 nghiệm của phương trình thì:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2m+1=(m-1)^2\end{matrix}\right.\)

Để 2 nghiệm là nghiệm dương thì:

\(\left\{\begin{matrix} x_1+x_2=2m>0\\ x_1x_2=(m-1)^2>0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} m> 0\\ m\neq 1\end{matrix}\right.(**)\)

Từ \((*);(**)\Rightarrow m> \frac{1}{2}; m\neq 1\) là điều kiện để pt có 2 nghiệm dương phân biệt.