\(x^4-4x^3-5x^2-3x^2+12x+15=0\)
\(\Leftrightarrow x^2\left(x^2-4x-5\right)-3\left(x^2-4x-5\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2-4x-5\right)=0\)
\(x^4-4x^3-8x^2+12x+15=0\)
\(\Leftrightarrow x^4+x^3-5x^3-5x^2-3x^2-3x+15x+15=0\)
\(\Leftrightarrow x^3\left(x+1\right)-5x^2\left(x+1\right)-3x\left(x+1\right)+15\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-5x^2-3x+15\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-5\right)-3\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\\x=\pm\sqrt{3}\end{matrix}\right.\)
Phân tích thành nhân tử ta được:
\(\left(x+1\right)\left(x-5\right)\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=5\\x=\pm\sqrt{3}\end{matrix}\right.\)