Cho a, b, c là 3 số phân biệt sao cho phương trình \(x^2+ax+1=0\) và \(x^2+bx+c=0\) có nghiệm chung. Đồng thời các phương trình \(x^2+x+a=0\) và \(x^2+cx+b=0\) cũng có nghiệm chung. Tính P = a + b + c
1. Cho pt: x2 -2(m-1)x + m2 - 3m = 0
a) Tìm m để pt có 2 nghiệm phân biệt
b) Tìm m để pt có 2 nghiệm x1 , x2 thỏa mãn x21+ x22 = 8
c) Tìm GTNN của A= x21 + x22
2. Cho pt: x2 - 5x + m +4 = 0.Tìm các giá trị của m để pt có 2 nghiệm phân biệt x1 , x2 thỏa mãn:
a) | x2 - x1| = 3
b) |x1| + |x2| = 4
Cho phương trình ẩn x: x2 – 2mx - 1 = 0 (1)
a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2.
b) Tìm các giá trị của m để: x12 + x22 – x1x2 = 7
cho pt x2+2x+m-1=0(*), trg đó m là tham số
a, giải pt (*) khi m = -2
b, tìm m để pt (*) có 2 nghiệm phân biệt x1và x2 thảo mãn điều kiện x1=2x2
1. cho pt x2-2(m-2)x-2m=0 với x là ẩn số giá trị của m để pt có 2 nghiệm là 2 số đối nhau là
a,0 b, \(\dfrac{-1}{2}\) c, 2 d, 4
2. biết rằng (x0; y0)là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+2y-3=0\\2x-y-1=0\end{matrix}\right.\) tổng x0 + y0 bằng
a,3 b,1 c,0 d, 2
3. trong △ABC vuông tại A có AC=3; AB=4 khi đó tanB bằng
a,\(\dfrac{4}{5}\) b,\(\dfrac{3}{5}\) c,\(\dfrac{3}{4}\) d \(\dfrac{4}{3}\)
4. trên đg tròn (O;R) lấy 2 điểm A,B sao cho số đo cung AB lớn hơn bằng \(270^o\) độ dài dây cung là
a, R\(\sqrt{2}\) b, R\(\sqrt{3}\) c, R d, 2R\(\sqrt{2}\)
5. cho đg tròn (O;3cm) 2 điểm A,B thuộc đường tròn và sđ \(\stackrel\frown{AB}\) = \(60^o\) độ dài cung nhỏ AB là
a, \(\dfrac{\pi}{2}\) cm b, \(3\pi\) c, \(\dfrac{\pi}{3}cm\) d, \(\pi\)cm
6. giá trị của m để 2 đg thẳng (d): y=xm+6 và (d'): y=3x+2-m song song là
a, m=-2 b, m=-3 c, m=-4 d, m=1
7. cho hàm số bậc nhất y=ax+b có hệ số góc bằng -1 và tung độ góc bằng 3 giá trị của biểu thức a2+b bằng
a,2 b, 4 c, 9 d, 5
8. cho hệ pt \(\left\{{}\begin{matrix}3x+my=1\\nx+y=3\end{matrix}\right.\) với m,n là tham số biết rằng (x;y)=(1,1) là 1 nghiệm của hệ đã cho giá trị của m+n bằng
a, -1 b, 3 c, 1 d, 2
9.cho Parabol (P) có pt \(y=\dfrac{x^2}{4}\) vào đường thẳng (d): y=-2x-4
a, (P) cắt (d) tại 2 điểm phân biệt
b, (P) cắt (d) tại điểm duy nhất (-2;2)
c, (P) ko cắt (d)
d, (P) tiếp xúc với (d), tiếp điểm là (-4;4)
10. tất cả các giá trị của x để \(\sqrt{-2x+6}\) có nghĩa là
a, x≥3 b, x>3 c, x≤3 d, x<-3
Cho pt
x2 - (2m-3)x + m^2 - 2m +2 =0
a) Xác định m để pt có hai nghiệm Phân Biệt
b) Trong trường hợp pt có hai nghiệm x1 ,x2 .Tìm x1^2 + x2^2
Cho pt \(x^2-2\left(m-1\right)x+m^2-3m=0\)
a/ tìm m dể pt có nghiệm bằng 0. Tìm nghiệm còn lại
b/ khi pt có nghiệm x1, x2. Tìm hệ thức giữa x1, x2 độc lập với m
Cho các số a, b, c khác 0 bất kì sao cho ac + bc + 3ab < 0. Chứng minh phương trình sau luôn có nghiệm: \(\left(ax^2+bx+c\right)\left(bx^2+cx+a\right)\left(cx^2+ax+b\right)=0\)
Cho pt : x^-6x+m-3=0. Tìm m để pt có 2 nghiệm phân biệt thoả mãn: (x1-1)*(x2^-5x2+m-4)=0