Cho ba số thực phân biệt a,b,c sao cho pt:x2+ax+1=0 và x2+bx+c=0 có nghiệm chung,đồng thời pt x2+x+a=0 và x2+cx+b=0 cũng có nghiệm chung.Hãy tính tỏing a+b+c
Cho a,b,c (c≠0) các số đôi một khác nhau, biết : \(\left\{{}\begin{matrix}x^2+ax+bx=0\\x^2+bx+ax=0\end{matrix}\right.\) có ít nhất 1 nghiệm chung
a)Tìm các nghiệm còn lại của 2 phương trình
b) CMR: các nghiệm còn lại của 2 phương trình là nghiệm của phương trình \(x^2+cx+ab=0_{ }\)
cho a,b,c>0 khác nhau, a+b+c=12
chứng minh trong 3 phương trình có 1 phương trình có nghiệm, 1 phương trình vô nghiệm:
x2+ax+b=0
x2+bx+c=0
x2+cx+a=0
Tìm các số a;b sao cho phương trình \(x^2+ax+6=0\)và \(x^2+bx+12=0\)có ít nhất 1 nghiệm chung và \(\left|a\right|+\left|b\right|\)nhỏ nhất
a) cho phương trình x2+ax+b+1=0 có 2 nghiệm nguyên dương .CMR a2+b2 là một hợp số
b) cho 3 phương trình ax2+2bx+c=0(1);bx2+2cx+a=0(2);cx2+2ax+b=0(3) với a,b,c khác 0 .CMR ít nhất một trong 3 phương trình trên đây có nghiệm
Cho a,b,c là các số nguyên.Các đa thức f(x) = ax2+bx+c và g(x) = (c-b)x2 + (c – a)x + (a+b). Chứng minh rằng 2 phương trình này có nghiệm chung khi a + b +2c chia hết cho 3
Giúp mình với ạ.Mk cảm ơn nhiều
Cho phương trình ax2+bx+c=0 (a≠0) có hai nghiệm x1, x2 thỏa mãn ax1+bx2+c=0. CMR: ac(a+c-3b)+b3=0.
: Cho phương trình: x2 + 2 (m + 1)x + m2 = 0. (1)
a. Giải phương trình với m = 5
b. Tìm m để phương trình (1) có 2 nghiệm phân biệt, trong đó có 1 nghiệm bằng - 2
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)