ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
- Với \(x< -1\Rightarrow x+\dfrac{x}{\sqrt{x^2-1}}< 0\) pt vô nghiệm
- Xét với \(x>1\):
Bình phương 2 vế của pt đã cho:
\(x^2+\dfrac{x^2}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}=\dfrac{1225}{144}\)
\(\Leftrightarrow\dfrac{x^4}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}-\dfrac{1225}{144}=0\)
Đặt \(\dfrac{x^2}{\sqrt{x^2-1}}=t>0\)
\(\Rightarrow t^2+2t-\dfrac{1225}{144}=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{25}{12}\\t=-\dfrac{49}{12}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^2}{\sqrt{x^2-1}}=\dfrac{25}{12}\)
Tới đây có thể bình phương 2 vế hoặc đặt \(\sqrt{x^2-1}=a\Rightarrow x^2=a^2+1\) đưa về pt bậc 2:
\(\dfrac{a^2+1}{a}=\dfrac{25}{12}\Leftrightarrow a^2-\dfrac{25}{12}a+1=0\) \(\Rightarrow a=...\Rightarrow x=...\)