1/ ĐKXĐ: $4x^2-4x-11\geq 0$
PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$
$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)
$\Leftrightarrow 2a^2-a-6=0$
$\Leftrightarrow (a-2)(2a+3)=0$
Vì $a\geq 0$ nên $a=2$
$\Leftrightarrow \sqrt{4x^2-4x-11}=2$
$\Leftrightarrow 4x^2-4x-11=4$
$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$
$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)
2/ ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$
$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)
$\Leftrightarrow a^2-3a-14=0$
$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)
$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$
3. ĐKXĐ: $x^2+3x\geq 0$
PT $\Leftrightarrow 10-(x^2+3x)=\sqrt{x^2+3x}$
$\Leftrightarrow 10-a^2=a$ (đặt $\sqrt{x^2+3x}=a, a\geq 0$)
$\Leftrightarrow a^2+a-10=0$
$\Rightarrow a=\frac{-1+\sqrt{41}}{2}$
$\Leftrightarrow x^2+3x=a^2=\frac{21-\sqrt{41}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{51-2\sqrt{41}})$ (đều tm)
d. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{x^2-4x+5}=(x^2-4x+5)+7$
$\Leftrightarrow a=a^2+7$
$\Leftrightarrow a^2-a+7=0$
$\Leftrightarrow (a-0,5)^2=-6,75<0$ (vô lý)
Vậy pt vô nghiệm.