Giải các phương trình sau :
a)\(\left|\dfrac{x+5}{-x^2+9}\right|=2\)
b)\(\dfrac{4}{\sqrt{2-x}}-\sqrt{2-x}=2\)
c)\(^{x^2-6x+9=4\sqrt{x^2-6x+6}}\)
d)\(\sqrt{x-3}=\dfrac{2}{\sqrt{x}-2}\)
e)\(\sqrt{x+1}=8-\sqrt{3x+1}\)
f')(x-2)\(\sqrt{2x+7}=x^2-4\)
g)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)
h)\(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
i) \(\sqrt{x+4}-\sqrt{3x+1}+2\sqrt{3x^2+13x+4}=51-4x\)
k)\(\dfrac{x-2}{1-x}+\dfrac{x-3}{x+1}=\dfrac{x^2+4x+15}{x^2-1}\)
Câu a:
ĐKXĐ: \(x\neq \pm 3\)
\(\left|\frac{x+5}{-x^2+9}\right|=2\Rightarrow \left[\begin{matrix} \frac{x+5}{-x^2+9}=2\\ \frac{x+5}{-x^2+9}=-2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x+5=2(-x^2+9)\\ x+5=-2(-x^2+9)\end{matrix}\right.\Rightarrow \left[\begin{matrix} 2x^2+x-13=0\\ 2x^2-x-23=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{105}}{4}\\ x=\frac{1\pm \sqrt{185}}{4}\end{matrix}\right.\) (đều thỏa mãn )
Vậy.......
Câu b:
ĐKXĐ: \(x< 2\)
Ta có: \(\frac{4}{\sqrt{2-x}}-\sqrt{2-x}=2\)
\(\Rightarrow 4-(2-x)=2\sqrt{2-x}\)
\(\Leftrightarrow 4=(2-x)+2\sqrt{2-x}\)
\(\Leftrightarrow 5=(2-x)+2\sqrt{2-x}+1=(\sqrt{2-x}+1)^2\)
\(\Rightarrow \sqrt{2-x}+1=\sqrt{5}\) (do \(\sqrt{2-x}+1>0\) )
\(\Rightarrow \sqrt{2-x}=\sqrt{5}-1\)
\(\Rightarrow 2-x=6-2\sqrt{5}\)
\(\Rightarrow x=-4+2\sqrt{5}\) (thỏa mãn)
Vậy...........
Câu c:
ĐKXĐ: \(x\leq 3-\sqrt{3}\) hoặc \(x\geq 3+\sqrt{3}\)
Ta có: \(x^2-6x+9=4\sqrt{x^2-6x+6}\)
\(\Leftrightarrow x^2-6x+6+3-4\sqrt{x^2-6x+6}=0\)
\(\Leftrightarrow (x^2-6x+6)-4\sqrt{x^2-6x+6}+4-1=0\)
\(\Leftrightarrow (\sqrt{x^2-6x+6}-2)^2=1\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x^2-6x+6}-2=1\\ \sqrt{x^2-6x+6}-2=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} \sqrt{x^2-6x+6}=3\\ \sqrt{x^2-6x+6}=1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x^2-6x-3=0\\ x^2-6x+5=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\pm 2\sqrt{3}\\ x=5\\ x=1\end{matrix}\right.\) (đều thỏa mãn)
Vậy PT có 4 nghiệm \(x\in \left\{3+2\sqrt{3}; 3-2\sqrt{3}; 1;5\right\}\)
Câu d:
ĐKXĐ : \(x\geq 3\)
\(\sqrt{x-3}=\frac{2}{\sqrt{x-2}}\)
\(\Rightarrow \sqrt{(x-3)(x-2)}=2\)
\(\Rightarrow (x-3)(x-2)=4\)
\(\Leftrightarrow x^2-5x+6=4\)
\(\Leftrightarrow x^2-5x+2=0\)
\(\Rightarrow \left[\begin{matrix} x=\frac{5+\sqrt{17}}{2}\\ x=\frac{5-\sqrt{17}}{2}\end{matrix}\right.\)
Kết hợp với ĐKXĐ suy ra \(x=\frac{5+\sqrt{17}}{2}\)
Câu e:
ĐKXĐ: \(x\geq \frac{-1}{3}\)
Ta có: \(\sqrt{x+1}=8-\sqrt{3x+1}\)
\(\Leftrightarrow \sqrt{x+1}+\sqrt{3x+1}-8=0\)
\(\Leftrightarrow (\sqrt{x+1}-3)+(\sqrt{3x+1}-5)=0\)
\(\Leftrightarrow \frac{x-8}{\sqrt{x+1}+3}+\frac{3(x-8)}{\sqrt{3x+1}+5}=0\) (liên hợp)
\(\Leftrightarrow (x-8)\left(\frac{1}{\sqrt{x+1}+3}+\frac{3}{\sqrt{3x+1}+5}\right)=0\)
Dễ thấy biểu thức \(\frac{1}{\sqrt{x+1}+3}+\frac{3}{\sqrt{3x+1}+5}>0\). Do đó \(x-8=0\Rightarrow x=8\) (t.m)
Vậy PT có nghiệm duy nhất $x=8$
Câu f:
ĐKXĐ: \(x\geq \frac{-7}{2}\)
Ta có: \((x-2)\sqrt{2x+7}=x^2-4\)
\(\Leftrightarrow (x-2)\sqrt{2x+7}-(x^2-4)=0\)
\(\Leftrightarrow (x-2)\sqrt{2x+7}-(x-2)(x+2)=0\)
\(\Leftrightarrow (x-2)[\sqrt{2x+7}-(x+2)]=0\)
\(\Rightarrow \left[\begin{matrix} x-2=0\\ \sqrt{2x+7}=x+2\end{matrix}\right.\)
Với \(x-2=0\Rightarrow x=2\) (thỏa mãn)
Với \(\sqrt{2x+7}=x+2\Rightarrow \left\{\begin{matrix} x\geq -2\\ 2x+7=(x+2)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\geq -2\\ x^2+2x-3=0\end{matrix}\right.\)
\(\Rightarrow x=1\)
Vậy \(x\in\left\{1;2\right\}\)
Câu g:
ĐK: \(x\geq 1\)
Ta có:
PT \(\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}=x-1\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=x-1\)
\(\Leftrightarrow \sqrt{x-1}+1+|\sqrt{x-1}-1|=x-1(*)\)
Nếu \(x\geq 2\) thì:
\((*)\Leftrightarrow \sqrt{x-1}+1+\sqrt{x-1}-1=x-1\)
\(\Leftrightarrow 2\sqrt{x-1}=x-1\)
\(\Leftrightarrow \sqrt{x-1}(\sqrt{x-1}-2)=0\)
\(\Rightarrow \sqrt{x-1}-2=0\) (do \(x\geq 2\Rightarrow \sqrt{x-1}\neq 0\) )
\(\Rightarrow x=5\) (thỏa mãn)
Nếu \(1\leq x< 2\) thì:
\((*)\Leftrightarrow \sqrt{x-1}+1+1-\sqrt{x-1}=x-1\)
\(\Leftrightarrow 2=x-1\Rightarrow x=3\) (không thỏa mãn)
Vậy PT có nghiệm duy nhất \(x=5\)
h)
ĐKXĐ: \(-4\leq x\leq \frac{1}{2}\)
\(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
\(\Leftrightarrow \sqrt{x+4}-\sqrt{1-x}-\sqrt{1-2x}=0\)
\(\Leftrightarrow (\sqrt{x+4}-2)-(\sqrt{1-x}-1)-(\sqrt{1-2x}-1)=0\)
\(\Leftrightarrow \frac{x}{\sqrt{x+4}+2}-\frac{-x}{\sqrt{1-x}+1}-\frac{-2x}{\sqrt{1-2x}+1}=0\) (liên hợp)
\(\Leftrightarrow x\left(\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{1-x}+1}+\frac{2}{\sqrt{1-2x}+1}\right)=0\)
Dễ thấy \(\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{1-x}+1}+\frac{2}{\sqrt{1-2x}+1}>0\)
Do đó $x=0$ là nghiệm duy nhất của pt.
Câu i:
Bạn xem lại \(51-4x\) hay \(51+4x\).
Câu k:
ĐKXĐ: \(x\neq \pm 1\)
\(\frac{x-2}{1-x}+\frac{x-3}{x+1}=\frac{x^2+4x+15}{x^2-1}\)
\(\Leftrightarrow \frac{(x-2)(x+1)+(x-3)(1-x)}{(1-x)(1+x)}=\frac{x^2+4x+15}{x^2-1}\)
\(\Leftrightarrow \frac{3x-5}{1-x^2}=\frac{x^2+4x+15}{x^2-1}\)
\(\Leftrightarrow \frac{5-3x}{x^2-1}=\frac{x^2+4x+15}{x^2-1}\)
\(\Rightarrow 5-3x=x^2+4x+15\)
\(\Leftrightarrow x^2+7x+10=0\)
\(\Leftrightarrow (x+2)(x+5)=0\Rightarrow \left[\begin{matrix} x=-2\\ x=-5\end{matrix}\right.\)(đều thỏa mãn)