Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ni Rika
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 1 2022 lúc 8:33

\(\Delta=9-4m>0\Rightarrow m< \dfrac{9}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)

\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)

\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{\left(x_1^2+1\right)\left(x_2^2+1\right)}=27\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\sqrt{\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}=25\)

\(\Leftrightarrow9-2m+2\sqrt{m^2+9-2m+1}=25\)

\(\Leftrightarrow\sqrt{m^2-2m+10}=m+8\left(m\ge-8\right)\)

\(\Leftrightarrow m^2-2m+10=m^2+16m+64\)

\(\Rightarrow m=-3\) (thỏa mãn)

Rhider
30 tháng 1 2022 lúc 8:32

Pt trên có a=1, b=5, c=-3m+2

\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)

Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0  <=>m> 17/12

Theo hệ thức Viet, ta có:

\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)

=> 12m = -7      <=>m=-7/12 (thỏa đkxđ)

Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10

Phạm Tuân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 5 2018 lúc 17:15

Phương trình m x 2 – 2(m – 2)x + 3(m – 2) = 0 (a = m; b = – 2(m – 2); c = 3(m – 2))

Ta có

∆ ' = ( m – 2 ) 2 = 3 m ( m – 2 ) = − 2 m 2 + 2 m + 4 = ( 4 – 2 m ) ( m + 1 )

P = x 1 .   x 2   = 3 m − 2 m

Phương trình có hai nghiệm phân biệt cùng dấu khi  a ≠ 0 Δ > 0 P > 0 ⇔ m ≠ 0 4 − 2 m m + 1 > 0 3 m − 2 m > 0

⇔ m ≠ 0 − 1 < m < 2 m > 2 m < 0 ⇒ − 1 < m < 0

Vậy −1 < m < 0 là giá trị cần tìm

Đáp án: C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2019 lúc 8:17

Phương trình x 2 – 2(m – 3) x + 8 – 4m = 0 (a ; 1; b’ = −(m – 3); c = 8 – 4m)

Ta có

∆ ' =   ( m   –   3 ) 2   –   ( 8   –   4 m ) =   m 2   –   2 m   +   1   =   ( m   –   1 ) 2

S   =   x 1   +   x 2   =   2   ( m   –   3 ) ; P   =   x 1 .   x 2   =   8   –   4 m

Vì a = 1 ≠ 0 nên phương trình có hai nghiệm âm phân biệt  ⇔ Δ ' > 0 P > 0 S < 0

⇔ m − 1 2 > 0 2 m − 3 < 0 8 − 4 m > 0 ⇔ m ≠ 1 m < 3 m < 2 ⇔ m ≠ 1 m < 2

Vậy m < 2 và m ≠ 1 là giá trị cần tìm.

Đáp án: A

Sách Giáo Khoa
Xem chi tiết
Giáo viên Toán
21 tháng 4 2017 lúc 17:27

Phương trình đã cho tương đương với:

\(x^3-3x^2=m\)

Khảo sát và lập bẳng biến thiên hàm số vế trái ta có:

\(y=x^3-3x^2\)

Đạo hàm: \(y'=3x^2-6x\)

\(y'=0\Leftrightarrow x=0,x=2\)

Lập bảng biến thiên:

x y' y 0 2 0 0 + + - 8 8 + 8 + - 8 > > > 0 -4

Nhìn vào bảng biến thiên ta thấy để phương trình \(x^3-3x^2=m\) có 3 nghiệm phân biệt thì: \(-4< m< 0\)

Mai Anh Vũ
Xem chi tiết
Lightning Farron
9 tháng 12 2016 lúc 17:15

\(x^2-\left(m-2\right)x+m\left(m-3\right)=0\)

\(\Leftrightarrow x^2-\left(m-2\right)x+\left(m^2-3m\right)=0\) (*)

\(\Delta'=\left(m-2\right)^2-\left(m^2-3m\right)\)

\(=m^2-4m+4-m^2+3m\)

\(=4-m\). Để (*) có 2 nghiệm phân biệt suy ra \(\Delta'>0\)

\(\Rightarrow4-m>0\Rightarrow m< 4\)

Vậy với m=4 (*) có 2 nghiệm phân biệt

 

 

Nguyễn Đình Hữu
Xem chi tiết
missing you =
24 tháng 11 2021 lúc 22:37

\(x-4\sqrt{x+3}+m=0\)

\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)

\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)

\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)

\(\Rightarrow f\left(0\right)=-3\)

\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2018 lúc 4:09

  ( m 2 + m + 3 ) x 2 + ( 4 m 2 + m + 2 ) x + m = 0  có a =   m 2   +   m   +   3 > 0, ∀m và có b =   4 m 2   +   m   +   2 > 0, ∀m, nên ab > 0, ∀m. Vì vậy không có giá trị nào của m để phương trình đã cho có hai nghiệm dương phân biệt.

....
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
22 tháng 8 2021 lúc 15:32

Đề là gì

Lê Thị Thục Hiền
22 tháng 8 2021 lúc 16:20

Pt\(\Leftrightarrow x^3-x\left(m+2\right)-2m+4=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+2-m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2-2x+2-m=0\left(1\right)\end{matrix}\right.\)

Để pt ban đầu có 3 nghiệm pb khi pt (3) có hai nghiệm pb khác -2

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(-2\right)^2-2\left(-2\right)+2-m\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\10-m\ne0\end{matrix}\right.\)\(\Rightarrow m>1;m\ne10\)

Vây...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 6 2019 lúc 10:28