Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Quỳnh Như
Xem chi tiết
Đỗ Đại Học.
15 tháng 4 2016 lúc 23:18

ta có: y'=\(\frac{-1}{\left(2x-1\right)^2}\)<0  với mọi x thuộc R

TA có k = y'(5)= \(\frac{-1}{81}\)

Nguyễn Hữu Đồng
16 tháng 4 2016 lúc 19:46

gnbhmn

Phạm Thảo Vân
18 tháng 4 2016 lúc 10:09

Đường thẳng đi qua A có hệ số góc k có phương trình : \(y=k\left(x-5\right)+\frac{1}{3}\left(\Delta\right)\)

\(\Delta\) tiếp xúc với (C) khi và chỉ khi hệ phương trình \(\begin{cases}\frac{x}{2x-1}=k\left(x-5\right)+\frac{1}{3}\\-\frac{1}{\left(2x-1\right)^2}=k\end{cases}\) có nghiệm

\(\begin{cases}\frac{x}{2x-1}=k\left(x-5\right)+\frac{1}{3}\\-\frac{1}{\left(2x-1\right)^2}=k\end{cases}\Leftrightarrow\begin{cases}\frac{x}{2x-1}=\frac{1}{\left(2x-1\right)^2}\left(x-5\right)+\frac{1}{3}\left(1\right)\\-\frac{1}{\left(2x-1\right)^2}=k\left(2\right)\end{cases}\)

\(\left(1\right)\Leftrightarrow2x^2-x=5-x+\frac{1}{3}\left(4x^2-4x+1\right)\)

\(\Leftrightarrow2x^2+4x-16=0\)

\(\Leftrightarrow\begin{cases}x=-4\\x=2\end{cases}\)

Lê An Bình
Xem chi tiết
Nguyễn Thị Quỳnh Như
18 tháng 4 2016 lúc 14:53

 Ta có : \(\sqrt{\frac{ab}{ab+2c}}=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{a+c}+\frac{b}{b+c}\)

Tương tự ta cũng có 

           \(\sqrt{\frac{bc}{bc+2a}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right);\sqrt{\frac{ca}{ca+2b}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{a}{a+b}\right)\)

Cộng các vế ta được \(S\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)

Vậy \(S_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

Võ Đăng Khoa
Xem chi tiết
Nguyễn Bình Nguyên
18 tháng 4 2016 lúc 15:54

Đặt \(x+y=t,t\in\left[-2;2\right]\)

Biến đổi được \(P=-2t^3+6t\)

Xét \(f\left(t\right)=-2t^3+6t\) trên \(\left[-2;2\right]\)

Lập bảng biến thiên

Ta có \(P_{Max}=4\) khi t=1

          \(P_{Min}=-4\) khi t= -1

 

 

Võ Thị Hoài Linh
Xem chi tiết
Hoàng Thị Tâm
18 tháng 4 2016 lúc 22:10

Hàm số \(f\left(x\right)\) liên tục trên đoạn \(\left[\frac{1}{2};2\right]\)

+)\(f'\left(x\right)=\frac{x^2+2x}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=0\notin\left[\frac{1}{2};2\right]\)hoặc \(x=-2\notin\left[\frac{1}{2};2\right]\)

+) \(f\left(\frac{1}{2}\right)=\frac{7}{6};f\left(2\right)=\frac{7}{3}\)

Vậy \(minf\left(x\right)_{x\in\left[\frac{1}{2};2\right]}=\frac{7}{6}\) khi \(x=\frac{1}{2}\)

       \(maxf\left(x\right)_{x\in\left[\frac{1}{2};2\right]}=\frac{7}{3}\) khi \(x=2\)

Ngoc Huyen Nguyen
Xem chi tiết
Nam Tước Bóng Đêm
25 tháng 4 2016 lúc 20:25

13/4 bn nha

Võ Xuân Lê Khôi
25 tháng 4 2016 lúc 20:27

13/4 tick minh nha ban

Nguyễn Thúy Hường
25 tháng 4 2016 lúc 21:14

Bằng 13/4 tick đúng cho mk đi mk chỉ chi tiết choyeu

Hoàng Huệ Cẩm
Xem chi tiết
Đỗ Thùy Dương
8 tháng 5 2016 lúc 21:34

Áp dụng bất đẳng thức Cô - si, ta có :

   \(P\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)

\(\Rightarrow P\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\)  (1)

Lại theo bất đẳng thức Cô si thì :

\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt[3]{\sqrt{\frac{27}{\left(xyz\right)^2}}}\)    (2)

Vì \(xyz=1\) nên ta có :

\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt{3}\)

Khi \(x=y=z=1\Rightarrow P=3\sqrt{3}\)

Vậy giá trị nhỏ nhất của \(P=3\sqrt{3}\)

 

Phạm Thị Thủy
Xem chi tiết
Nguyễn Minh Hằng
8 tháng 5 2016 lúc 21:57

Ta có :

\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\) (1)

Theo bất đẳng thức Cô-si ta có :

\(\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge9\)

Vì \(x+y+z=1\) nên có 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{4}\)

Thế vào (1) ta có :

\(P\le\frac{3}{4}\) với mọi \(\left(x,y,z\right)\in D\)

Mặt khác lấy \(x=y=z=\frac{1}{3}\), khi đó \(\left(x,y,z\right)\in D\) ta có \(P=\frac{3}{4}\) vậy max \(P=\frac{3}{4}\)

 

Phạm Đức Dâng
Xem chi tiết
Thiên An
14 tháng 5 2016 lúc 15:10

Ta có : \(-x+\sqrt{x}=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

       \(\Rightarrow f\left(x\right)=3^{-x+\sqrt{x}}\le3^{\frac{1}{4}}=\sqrt[4]{3}\Rightarrow\) Max \(f\left(x\right)=\sqrt[4]{3}\) khi \(x=\frac{1}{4}\)

Không có giá trị Min

Phan Thị Minh Uyên
Xem chi tiết
Thiên An
14 tháng 5 2016 lúc 15:17

     \(0\le\sin^2x\le1\Rightarrow0,5^0\ge0,5^{\sin^2x}\ge0,5^1\)

 \(\Leftrightarrow1\ge f\left(x\right)\ge\frac{1}{2}\)

 \(\Leftrightarrow\) Max f(x) = 1 khi \(x=k\pi\)

      Min f(x) =\(\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\)   \(k\in Z\)

Nguyễn Trọng Nghĩa
14 tháng 5 2016 lúc 15:49

Đặt \(t=\sin^2x\) với \(t\in\left[0;1\right]\Rightarrow f\left(x\right)=0,5^t=g\left(t\right)\) với \(t\in\left[0;1\right]\)

Ta có : \(g'\left(t\right)=0,5^1\ln0,5=-0,5^t\ln2< 0\) với mọi \(t\in\left[0;1\right]\) hàm số nghịch biến với mọi \(t\in\left[0;1\right]\)

\(\Rightarrow0\le t\le1\Rightarrow g\left(0\right)\ge g\left(t\right)\ge g\left(1\right)\Leftrightarrow1\ge g\left(t\right)\ge\frac{1}{2}\)

Vậy Max f(x) = 1 khi \(x=k\pi\)

Min \(f\left(x\right)=\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\)  (k thuộc Z)

Nguyễn Hồ Thúy Anh
Xem chi tiết
Nguyễn Trọng Nghĩa
14 tháng 5 2016 lúc 15:54

Ta có : \(f\left(x\right)=2^{x-1}+2^{3-x}\ge2\sqrt{2^{x-1}.2^{3-x}}=4\)

Dấu bằng xảy ra khi và chỉ khi \(2^{x-1}=2^{3-x}\Leftrightarrow x-1=3-x\)

                                                                \(\Leftrightarrow x=2\)

Vậy Min \(f\left(x\right)=4\) khi x = 2

Thiên An
14 tháng 5 2016 lúc 15:26

Ta có \(f'\left(x\right)=2^{x-1}\ln2-2^{3-x}\ln2=\left(2^{x-1}-2^{3-x}\right)\ln2=0\)

         \(\Leftrightarrow2^{x-1}=^{3-x}\)

         \(\Leftrightarrow x-1=3-x\)

         \(\Leftrightarrow x=2\)

Mà \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(2^{x-1}+2^{3-x}\right)=+\infty\)

        \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(2^{x-1}+2^{3-x}\right)=+\infty\)

Ta có bảng biến thiên :

x f'(x) f(x) - 8 + 8 2 - 0 + 4 + 8 8 +

Vậy Min f(x) = 4 khi x = 2