Cho hàm số f x = x − 3 3 x 2 + 8. Tính tổng các giá trị nguyên của m để phương trình f x − 1 + m = 2 có đúng 3 nghiệm phân biệt.
A. -2
B. -6
C. 8
D. 4
Cho hàm số y = f(x) có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m + 1 có 3 nghiệm thực phân biệt?
A. –3 ≤ m ≤ 3
B. –2 ≤ m ≤ 4
C. –2 < m < 4
D. –3 < m < 3
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có đồ thị như hình bên. Tất cả các giá trị của m để phương trình | f ( x ) | + m - 1 = 0 có 3 nghiệm phân biệt là
A. m=1
B. m=2
C. m = ± 1
D. m=0
Hình vẽ dưới đây là đồ thị của hàm số y = 3 x - 2 x - 1 . Tìm tất cả các giá trị thực của tham số m để phương trình 3 x - 2 x - 1 = m có hai nghiệm phân biệt?
A. -3 < m < 0
B. m < -3
C. 0 < m < 3
D. m > 3
Tìm tất cả các giá trị của m để phương trình log 2 3 x − 2 − log 2 3 x + 1 = m có 3 nghiệm phân biệt?
A.m > 3
B. m < 2
C. m > 0
D. m=0
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình 9 1 - x + 2 ( m - 1 ) 3 1 - x + 1 = 0 có 2 nghiệm phân biệt.
A. m > 1
B. m < -1
C. m < 0
D. -1 < m < 0
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Cho đồ thị hàm số y = a x 3 + b x 2 + c x + d có điểm cực đại là A(-2;2), điểm cực tiểu là B(0;-2). Tìm tất cả các giá trị của m để phương trình a x 3 + b x 2 + c x + d = m có 3 nghiệm phân biệt.
A. m > 2
B. m < - 2
C. - 2 < m < 2
D. m = 2 m = - 2
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ ℝ . Biết f 0 = 1 và 2 - x f x - f ' x = 0 . Tìm tất cả các giá trị thực của tham số m để phương trình f x = m có hai nghiệm thực phân biệt.
A. m < e 2
B. 0 < m < e 2
C. 0 < m ≤ e 2
D. m > e 2