Cho tam giác ABC vuông tại a đường trung tuyến Am=AB chứng minh sin C=1/2
Cho tam giác ABC vuông tại A(AB<AC) kẻ đường cao AH, đường trung tuyến AM, biết AC=a, góc C=x.
Chứng minh \(\sin2x=2\sin x.cosx\)
ta có sina = AH/AC, cosa= CH/AH ,góc AMH =2a, cos2a =HM/AM =HM /a ,sin2a =AH/AM=AH/a.
=>2sina.cosa =2 . AH/AC.CH/AC= 2AH.CH/AC2 =2AH.CH/BC.CH=2AH/2a=AH/a =sin2a
(:p)
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
Cho tam giác ABC vuông tại A có đường trung tuyến AM = AB .
Chứng minh rằng : SinC = 1/2
ΔABC vuông tại A có AM là trung tuyến
nên MA=MB
mà MA=AB
nên MA=AB=MB
=>ΔMAB đều
=>góc B=60 độ
=>góc C=90-60=30 độ
sin C=sin 30=1/2
Bài 1: Cho tam giác ABC vuông tại A ( AB>AC), AM là đường trung tuyến, kẻ đường thẳng vuông góc với AM tại M lần lượt cắt AB tại E, cắt AC tại F.
a) chứng minh: tam giác MBE đồng dạng tam giác MFC
b) Chứng minh: AE.AB=AF.AC
c) Đường cao AH của tam giác ABC cắt EF tại I. Chứng minh: \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Bài 2: Cho E= x2-2x+2022
a) Chúng minh: E>0 với mọi x
b) Tìm GTLN của: A=\(\dfrac{2020}{x^2-2x+2022}\)
Cho tam giác ABC vuông tại A, đường cao AD. Gọi E, F là hình chiếu của D lên AB, AC. Lấy 3 điểm M, N, K thuộc BC sao cho AM, EN, FK cùng vuông góc với EF.
a) Chứng minh: AM là trung tuyến tam giác ABC
b) Chứng minh: EN là đường trung tuyến tam giác BED
c) Chứng minh: FK là đường trung tuyến tam giác DFC
d) Chứng minh: AM = EN + FK
Lam truoc cau a nhe,toi roi
a.Vi tu giac AFME co 3 goc vuong va 2 duong cheo vuong goc voi nhau nen AFDE la hinh vuong.
Goi giao diem giua 2 duong cheo AM va EF do la Q
Suy ra:AQ=FQ nen tam giac AQF la tam giac vuong can hay \(\widehat{AQF}=45^0\left(1\right)\)
Tu giac QFKM co 3 goc vuong va MQ=FQ nen QFKM la hinh vuong.
Suy ra:FK=MK
Ta co:\(FK^2=MK.KC\Rightarrow FK=KC\)
Nen tam giac FKC la tam giac vuong can hay \(\widehat{C}=45^0\left(2\right)\)
Tu (1) va (2) suy ra:AM=MC
Hay AM la duong trung tuyen cua tam giac ABC.
1) tam giác ABC có các đường trung tuyến BD và CE bằng nhau . chứng minh rằng tam giác ABC là tam giác cân.
2)cho tam giác ABC cân ở A , AB=34cm , BC =32cm , và 3 trung tuyến AM , BN , CP đồng quy tại trọng tâm G
a) chúng minh AM vuông góc với
b) tính độ dài AM , BN ,CP (làm trong kết quả đến chữ số thập phân thứ 2)
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
Bài 3.Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH, trung tuyến AM.
a) Chứng minh rằng AB^2= 2BH.AM.
b) Từ B vẽđường vuông góc với trung tuyến AM cắt AH tại D; cắt AM tại E và cắt AC tại F. Chứng minh: BE.BF = BH.BC = AF.AC.
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên BC=2AM
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AB^2=BH\cdot BC\)
hay \(AB^2=2\cdot BH\cdot AM\)
Cho tam giác ABC vuông tại A, đường phân giác AD. Chứng minh rằng √2/AD = 1/AB + 1/AC. Kẻ đường cao AH và đường trung tuyến AM của tam giác ABC chứng minh rằng nếu 1/ah^2+1/am^2=2/ad^2. Giúp mình câu 2 thôi ạ mình cảm ơn
Để chứng minh rằng √2/AD = 1/AB + 1/AC, ta có thể sử dụng định lý phân giác trong tam giác vuông.
Vì tam giác ABC vuông tại A, nên ta có đường phân giác AD chia góc BAC thành hai góc bằng nhau.
Áp dụng định lý phân giác, ta có:
AB/BD = AC/CD
Từ đó, ta có:
AB/AD + AC/AD = AB/BD + AC/CD
= (AB + AC)/(BD + CD)
= (AB + AC)/BC
= 1/BC (vì tam giác ABC vuông tại A)
Vậy, ta có:
1/AD = 1/AB + 1/AC
√2/AD = √2/AB + √2/AC
Vậy, chứng minh đã được hoàn thành.
Để chứng minh rằng nếu 1/ah^2 + 1/am^2 = 2/ad^2, ta cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
2/AD^2=(căn 2/AD)^2
=(1/AB+1/AC)^2
\(=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+2\cdot\dfrac{1}{AB\cdot AC}\)
\(=\dfrac{1}{AH^2}+2\cdot\dfrac{1}{AH\cdot BC}\)
\(=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)
Cho tam giác ABC có AB nhỏ hơn AC Vẽ đường trung tuyến AM. Trên tia đối của tia ma lấy điểm E sao cho ma = MD chứng minh
a, AB = CD và AB song song C
b, dựng phía ngoài tam giác ABC hai tam giác vuông cân tại A là tam giác BAE và tam giác CAF. Chứng minh AC = BF và AC vuông góc với BF
c, chứng minh AM bằng 1/2 EF
d, kẻ đường cao ah h của tam giác ABC Chứng minh đường thẳng a đi qua trung điểm I của EF
e, chứng minh đường thẳng AM vuông góc với EF