Để chứng minh rằng √2/AD = 1/AB + 1/AC, ta có thể sử dụng định lý phân giác trong tam giác vuông.
Vì tam giác ABC vuông tại A, nên ta có đường phân giác AD chia góc BAC thành hai góc bằng nhau.
Áp dụng định lý phân giác, ta có:
AB/BD = AC/CD
Từ đó, ta có:
AB/AD + AC/AD = AB/BD + AC/CD
= (AB + AC)/(BD + CD)
= (AB + AC)/BC
= 1/BC (vì tam giác ABC vuông tại A)
Vậy, ta có:
1/AD = 1/AB + 1/AC
√2/AD = √2/AB + √2/AC
Vậy, chứng minh đã được hoàn thành.
Để chứng minh rằng nếu 1/ah^2 + 1/am^2 = 2/ad^2, ta cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
2/AD^2=(căn 2/AD)^2
=(1/AB+1/AC)^2
\(=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+2\cdot\dfrac{1}{AB\cdot AC}\)
\(=\dfrac{1}{AH^2}+2\cdot\dfrac{1}{AH\cdot BC}\)
\(=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)