Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Khánh Hòa
Xem chi tiết
Nguyễn Linh Chi
5 tháng 5 2020 lúc 16:09

Bạn kiểm tra lại đề bài!

Khách vãng lai đã xóa
Pek tiêu
5 tháng 5 2020 lúc 16:35

Hình như đề bài ko đúng đó bn!..bn kiểm tra lại

Khách vãng lai đã xóa
Lê Tuấn Minh
9 tháng 5 2020 lúc 21:07

đề bài sai rồi

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 8 2018 lúc 18:16

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 4 2017 lúc 13:04

Giải sách bài tập Toán 10 | Giải sbt Toán 10

-π = -3,14; -2π = -6,28; (-5π)/2 = -7,85.

Vậy (-5π)/2 < -6,32 < -2π.

Do đó điểm M nằm ở góc phần tư thứ II.

Đáp án: B

loveyoongi03
Xem chi tiết
Ngô Thành Chung
1 tháng 9 2021 lúc 11:33

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ 

Vy Nguyễn
Xem chi tiết
Nguyễn Đức Trí
10 tháng 9 2023 lúc 20:50

a) \(y=\dfrac{4}{sin^22x-1}\)

Xác định khi và chỉ khi

\(sin^22x-1\ne0\)

\(\Leftrightarrow sin^22x\ne1\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x\ne1\\sin2x\ne-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x\ne sin\dfrac{\pi}{2}\\sin2x\ne sin\dfrac{3\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x\ne\dfrac{\pi}{2}+k2\pi\\2x\ne\dfrac{3\pi}{2}+k2\pi\\2x\ne-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{3\pi}{4}+k\pi\\x\ne-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\) \(\Leftrightarrow x\ne\pm\dfrac{\pi}{4}+k\pi\)

Vậy tập xác định là \(D=R\)\\(\left\{\pm\dfrac{\pi}{4}+k\pi\right\}\)

 

Nguyễn Lê Phước Thịnh
10 tháng 9 2023 lúc 21:12

2:

a: \(y=4+\left(cos^2x-sin^2x\right)+\left(cos^2x+sin^2x\right)\)

\(=4+1+cos2x=cos2x+5\)

-1<=cos2x<=1

=>-1+5<=cos2x+5<=1+5

=>4<=cos2x+5<=6

TGT là T=[4;6]

b: \(y=5-\dfrac{3}{2}\cdot2sinx\cdot cosx=-\dfrac{3}{2}sin2x+5\)

-1<=sin 2x<=1

=>-3/2<=-3/2sin2x<=3/2

=>-3/2+5<=y<=3/2+5

=>7/2<=y<=13/2

=>TGT là T=[7/2;13/2]

c: -1<=sin x<=1

=>-2<=-2sin x<=2

=>3<=-2sinx+5<=7

=>\(\dfrac{4}{3}>=\dfrac{4}{-2sinx+5}>=\dfrac{4}{7}\)

TGT là T=[4/7;4/3]

An Hoài Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2021 lúc 18:19

1.

\(y'=2cosx-2sin2x=2cosx-4sinx.cosx=2cosx\left(1-2sinx\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}cosx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\\x=\dfrac{\pi}{6}\\x=\dfrac{5\pi}{6}\end{matrix}\right.\)

Hàm đồng biến trên các khoảng \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)

Nguyễn Việt Lâm
18 tháng 6 2021 lúc 18:21

2.

Xét hàm \(f\left(x\right)=x^2-2x-3\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f'\left(x\right)=2x-2=0\Rightarrow x=1\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2019 lúc 18:21

Giải sách bài tập Toán 10 | Giải sbt Toán 10

(h.66) Ta có

A M 2  = MA’ = MA + AA’

Suy ra

Sđ A M 2  = -α + π + k2π, k ∈ Z.

Vậy đáp án là B.

6.13. (h.67) Ta có

Sđ A M 3  = -sđ AM = -α + k2π, k ∈ Z.

Đáp án: D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2017 lúc 14:33

a) Đúng

b) Đúng

c) Sai

Khoa Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2017 lúc 5:32

Chọn đáp án A

Phương pháp

+) Đặt t=2sinx, xác định điều kiện của t.

+) Khi đó phương trình trở thành f(t)=m. Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và đường thẳng y=m song song với trục hoành.

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và đường thẳng y=m song song với trục hoành.

⇒ Phương trình f(t)=m có 1 nghiệm t=2 và một nghiệm t ∈ - 2 ; 2  hoặc phương trình f(t)=m có 1 nghiệm t=-2 và một nghiệm  t ∈ - 2 ; 2 .