Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Cao Sơn
Xem chi tiết
Nguyễn Đức Trí
9 tháng 8 2023 lúc 15:28

\(\left(x+1\right)\left(y+1\right)=9\)

\(\Rightarrow xy+x+y+1=9\)

\(\Rightarrow xy+x+y=8\)

\(\Rightarrow x+y=8-xy\left(1\right)\)

\(K=x^2+y^2\)

\(\Rightarrow K=\left(x+y\right)^2-2xy=\left(8-xy\right)^2-2xy\)

\(\Rightarrow K=64-16xy+\left(xy\right)^2-2xy\)

\(\Rightarrow K=\left(xy\right)^2-18xy+64\)

\(\Rightarrow K=\left(xy\right)^2-18xy+81-17\)

\(\Rightarrow K=\left(xy-9\right)^2-17\ge-17\left(\left(xy-9\right)^2\ge0,\forall x;y\right)\)

\(\Rightarrow GTNN\left(K\right)=-17\)

Đào Trí Bình
9 tháng 8 2023 lúc 15:35

GTNN (K) = -17

Nguyễn Thùy Dương
9 tháng 8 2023 lúc 15:42

⇒��+�+�+1=9

⇒��+�+�=8

⇒�+�=8−��(1)

�=�2+�2

⇒�=(�+�)2−2��=(8−��)2−2��

⇒�=64−16��+(��)2−2��

⇒�=(��)2−18��+64

⇒�=(��)2−18��+81−17

⇒�=(��−9)2−17≥−17((��−9)2≥0,∀�;�)

⇒����(�)=−17

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 12 2017 lúc 8:17

Đáp án C

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 21:52

Từ giả thiết ta có:

\(x+y=3\left(\sqrt{x+1}+\sqrt{y+2}\right)\le3\sqrt{2\left(x+y+3\right)}\)

\(\Leftrightarrow P\le3\sqrt{2\left(P+3\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\18P+54\ge P^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\P^2-18P-54\le0\end{matrix}\right.\)

\(\Leftrightarrow0\le P\le9+3\sqrt{15}\)

\(\Rightarrow maxP=9+3\sqrt{15}\Leftrightarrow\left(x;y\right)=\left(\dfrac{10+3\sqrt{15}}{2};\dfrac{8+3\sqrt{15}}{2}\right)\)

Hoàng Tuấn Hùng
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
2 tháng 1 2021 lúc 19:39

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 21:52

\(3=x+y+xy\le\sqrt{2\left(x^2+y^2\right)}+\dfrac{x^2+y^2}{2}\)

\(\Rightarrow\left(\sqrt{x^2+y^2}-\sqrt{2}\right)\left(\sqrt{x^2+y^2}+3\sqrt{2}\right)\ge0\)

\(\Rightarrow x^2+y^2\ge2\)

\(\Rightarrow-\left(x^2+y^2\right)\le-2\)

\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\le\sqrt{2\left(9-x^2+9-y^2\right)}+\dfrac{\sqrt{2\left(x^2+y^2\right)}}{4}\)

\(P\le\sqrt{2\left(18-x^2-y^2\right)}+\dfrac{1}{4}.\sqrt{2\left(x^2+y^2\right)}\)

\(P\le\left(\sqrt{2}-1\right)\sqrt{18-x^2-y^2}+\sqrt[]{2}\sqrt{\dfrac{\left(18-x^2-y^2\right)}{2}}+\dfrac{1}{2}\sqrt{\dfrac{x^2+y^2}{2}}\)

\(P\le\left(\sqrt{2}-1\right).\sqrt{18-2}+\sqrt{\left(2+\dfrac{1}{4}\right)\left(\dfrac{18-x^2-y^2+x^2+y^2}{2}\right)}=\dfrac{1+8\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(x=y=1\)

Nguyễn Ngọc Oanh
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 18:28

\(x+y=1\Rightarrow y=1-x\)

\(P=x^3+\left(1-x\right)^3+x\left(1-x\right)\)

\(P=2x^2-2x+1=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

\(P_{min}=\dfrac{1}{2}\) khi \(x=y=\dfrac{1}{2}\)

trà sữa trân châu đường...
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 21:21

x^2+y^2=(x+y)^2-2xy

=5^2-2*3

=25-6

=19

x^3+y^3=(x+y)^3-3xy(x+y)

=5^3-3*3*5

=125-9*5

=80

(x-y)^2=(x+y)^2-4xy=5^2-4*3=13

=>\(x-y=\sqrt{13}\)

Thảo Vi
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined