\(x+y=1\Rightarrow y=1-x\)
\(P=x^3+\left(1-x\right)^3+x\left(1-x\right)\)
\(P=2x^2-2x+1=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
\(P_{min}=\dfrac{1}{2}\) khi \(x=y=\dfrac{1}{2}\)
\(x+y=1\Rightarrow y=1-x\)
\(P=x^3+\left(1-x\right)^3+x\left(1-x\right)\)
\(P=2x^2-2x+1=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
\(P_{min}=\dfrac{1}{2}\) khi \(x=y=\dfrac{1}{2}\)
Cho x,y,z là các số thực thỏa mãn:
-2≤x,y,z≤5 và x+2y+3z≤9. Tìm GTLN của bt:
M= x2 +2y2 +3z2
Cho các số x, y thỏa mãn:
2x+3y=13. Tính GTNN của Q= x2 +y2
Cho 3 số thực x,y,z thỏa mãn điều kiện x+y+z=0 và
xyz không bằng 0 Tính giá trị biểu thức:
P=x^2/y^2+z^2-x^2 + y^2/z^2+x^2-y^2 + z^2/x^2+y^2-z^2
Chp x,y là 2 số thực dương thỏa mãn \(x^3+y^3=xy-\dfrac{1}{27}\)
Tính giá trị của biểu thức \(P=\left(x+y+\dfrac{1}{3}\right)^3-\dfrac{3}{2}\left(x+y\right)+2016\)
Cho hai số x và y thỏa mãn x2+2y2-3xy=0 và x>y>0.
Tính GTBT: A=\(\dfrac{6x+16y}{5x-3y}\)
cho hai so x,y > 0(xy>=1) . tim gtnn cua Q=(x-1/x^2)(y-1y^2) + xy
Cho các số x,y,z dương thỏa mãn:
x2 +y2 +z2 = 1. Tìm GTNN của M= 1/16x2 +1/4y2 + 1/z2
Cho các số x,y,z dương thỏa mãn:
x2 +y2 +z2 = 7/4. Tìm GTNN của M= 1/16x2 +1/4y2 + 1/z2
Cho hai số thực x,y thỏa mãn điều kiện x+y=1 và x.y khác 0.
Chứng minh rằng \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Giúp mình với!!!