Biết rằng phương trình a x 3 + 21 x 2 + 6 x + 2019 = 0 có ba nghiệm thực phân biệt (a là tham số). Phương trình 4 a x 3 + 21 x 2 + 6 x + 2019 3 a x + 21 = 9 a x 2 + 14 x + 2 2 có bao nhiêu nghiệm thực phân biệt?
A. 1
B. 4
C. 2
D. 3
Giải các phương trình sau
a) 22-x(1-4x)=(2x+3)^3
b) 2x/3 + 2x-1/6 = 4- x/3
c) x-1/2019 + x-2/2018 = x-3/2017 + x-4/2016
d) 2-x/2001 - 1 = 1-x/2002 - x/2003
e) 150-x/25 + 188-x/21 + 201-x/19 +171-x/23 =0
a) \(22-x\left(1-4x\right)=\left(2x+3\right)^3\)
\(\Leftrightarrow22-x+4x^2=8x^3+36x^2+54x+27\)
\(\Leftrightarrow-x-54x+4x^2-36x^2-8x^3=-22+27\)
\(\Leftrightarrow-8x^3-32x^2-55x=5\Leftrightarrow-8x^3-32x^2-55x-5=0\)
Bn tự làm tiếp nhé
b) \(\frac{2x}{3}+\frac{2x-1}{6}=\frac{4-x}{3}\Leftrightarrow\frac{2.2x}{6}+\frac{2x-1}{6}=\frac{2\left(4-x\right)}{6}\)
\(\Leftrightarrow2.2x+2x-1=2\left(4-x\right)\Leftrightarrow4x+2x-1=8-2x\)
\(\Leftrightarrow6x-1=8-2x\Leftrightarrow8x=9\Leftrightarrow x=\frac{9}{8}\)
Vậy phương trình có tập nghiệm S ={9/8}
c) \(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)
\(\Leftrightarrow\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
Do \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}>0\)
Nên \(x-2020=0\Leftrightarrow x=2020\)
1. Giải phương trình nghiệm nguyên
a) \(x^2+4x+2018^{10}\)
b) \(x^2+4x+\left(y-1\right)^2=21\)
c) \(x^2+3\left(y-1\right)^2=2021\)
d) \(\left(3x-1\right)^{2020}-18\left(y-2\right)^{2019}=2019^{2020}\)
2. Tìm x,y ∈ Z
a) \(x^2-y^2+6y=56\)
b) \(x^2-4x+9y^2-6y=11\)
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
1a. Đề lỗi
1b.
PT $\Leftrightarrow (x+2)^2+(y-1)^2=25$
$\Leftrightarrow (x+2)^2=25-(y-1)^2\leq 25$
$(x+2)^2$ là scp không vượt quá $25$ nên có thể nhận các giá trị $0,1,4,9,16,25$
Nếu $(x+2)^2=0\Rightarrow (y-1)^2=25$
$\Rightarrow (x,y)=(-2, 6), (-2, -4)$
Nếu $(x+2)^2=1\Rightarrow (y-1)^2=24$ không là scp (loại)
Nếu $(x+2)^2=4\Rightarrow (y-1)^2=21$ không là scp (loại)
Nếu $(x+2)^2=9\Rightarrow (y-1)^2=16$
$\Rightarrow (x,y)=(1, 5), (1, -3), (-5,5), (-5, -3)$
Nếu $(x+2)^2=25\Rightarrow (y-1)^2=0$
$\Rightarrow (x,y)=(3, 1), (-7, 1)$
1c.
Vì $x^2$ là scp nên $x^2\equiv 0,1\pmod 3$
$3(y-1)^2\equiv 0\pmod 3$
$\Rightarrow x^2+3(y-1)^2\equiv 0,1\pmod 3$
Mà $2021\equiv 2\pmod 3$
Do đó pt $x^2+3(y-1)^2=2021$ vô nghiệm
1d.
Ta thấy:
$(3x-1)^{2020}$ là scp không chia hết cho $3$ nên $(3x-1)^{2020}\equiv 1\pmod 3$
$18(y-2)^{2019}\equiv 0\pmod 3$
$\Rightarrow (3x-1)^{2020}+18(y-2)^{2019}\equiv 1\pmod 3$
Mà $2019^{2020}\equiv 0\pmod 3$
Do đó pt vô nghiệm.
Cho phương trình: x2 - (2m +3 )x + 4m +2 = 0 (1) với m là tham số
a) Tìm m để phương trình (1) có 1 nghiệm bằng x = 2018 - \(\sqrt{2019}\)
b) Tìm m để phương trình (1) có 2 nghiệm thỏa mãn điều kiện:2x1 - 5x2 = 6
b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)
\(=4m^2+12m+9-16m-8\)
\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Theo đề, ta có:
\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=4m+2\)
\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)
\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)
\(\Leftrightarrow40m^2-112m-98=0\)
\(\Leftrightarrow40m^2-140m+28m-98=0\)
=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)
=>(2m-7)(20m+14)=0
=>m=7/2 hoặc m=-7/10
1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF
Giải các phương trình sau:
a) 5 x = x + 2 b) 7 x − 3 − 2 x + 6 = 0 ;
c) x 2 − x − 3 + x = 0 ; d) 2 x − 3 − 21 = x .
Bài: giải các phương trình sau:
a/2x(27x^2-8)+4(2x-6)(2x+6)-(3x-4)(5x+2)=2(3x-4)(9x^2+12x+16).
b/ 4-x/2018-2=3-x/2019-x/1011
Giải phương trình(bpt) x+3/2019+x+6/2016 > x+9/2013 + x+12/2010
giúp mình với mn
Biết rằng phương trình log 2 2 x - log 2 2018 - 2019 = 0 có hai nghiệm thực x 1 , x 2 .Tích x 1 x 2 bằng
A. log 2 2018
B.0,5
C.1
D.2
\(\frac{x}{x^2+9x+2019}=\frac{x^2+10x+2019}{x^2+8x+2019}\)
Ta thấy \(0\)không thỏa mãn phương trình trên.
Với \(x\ne0\)phương trình tương đương với:
\(\frac{1}{x+9+\frac{2019}{x}}=\frac{x+10+\frac{2019}{x}}{x+8+\frac{2019}{x}}\)
\(\Leftrightarrow\frac{1}{t+9}=\frac{t+10}{t+8}\)(\(t=x+\frac{2019}{x}\))
\(\Rightarrow\left(t+10\right)\left(t+9\right)=t+8\)
\(\Leftrightarrow t^2+18t+82=0\)
\(\Leftrightarrow\left(t+9\right)^2+1=0\)(vô nghiệm)
Vậy phương trình đã cho vô nghiệm.
Bài1:(1,5 điểm)Giải các phương trình sau
a)3(2x-3)=5x+1
b)x+1/2021+x+2/2020+x+3/2019+x+2028/2=0
a) \(3\left(2x-x\right)=5x+1\)
\(\Leftrightarrow6x-3x=5x+1\)
\(\Leftrightarrow6x-3x-5x=1\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\dfrac{1}{-2}=-\dfrac{1}{2}\)
b) \(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}+\dfrac{x+4}{2018}=0\)
\(\Leftrightarrow\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)
\(\Leftrightarrow\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)
\(\Leftrightarrow\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}\right)\)
\(\Leftrightarrow x+2022=0\)
\(\Leftrightarrow x=-2022\)
a)3(2x-3)=5x+1
⇔6x-9=5x+1
⇔6x-5x=1+9
⇔x=10
vậy phương trình có nghiệm là S={10}
b)\(\dfrac{x+1}{2021}\)+\(\dfrac{x+2}{2020}\)+\(\dfrac{x+3}{2019}\)+\(\dfrac{x+2028}{2}\)=0
⇔2020(x+1)+2021(x+2)+2041210(x+2028)=0
⇔2045251x+4139579942=0
⇔2045251x=-4139579942=0
⇔x=-\(\dfrac{4139579942}{2045251}\)
vậy phương trình có tập nghiệm là S={\(-\dfrac{4139579942}{2045251}\)}