Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2022 lúc 10:15

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó:ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\)

c: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó; BD=60/7(cm); CD=80/7(cm)

Phương Phương
Xem chi tiết
Nguyễn Phúc Trường An
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2022 lúc 13:14

a.

Xét hai tam giác vuông HBA và ABC có:

\(\left\{{}\begin{matrix}\widehat{HBA}\text{ chung}\\\widehat{AHB}=\widehat{BAC}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)

b.

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Do \(\Delta HBA\sim\Delta ABC\left(cmt\right)\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

Áp dụng định lý Pitago trong tam giác vuông HBA:

\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6\left(cm\right)\)

Nguyễn Việt Lâm
10 tháng 4 2022 lúc 13:14

undefined

kanna kamui
Xem chi tiết
Khang Diệp Lục
26 tháng 6 2021 lúc 15:30

1.Xét ΔHBA và ΔABC có:

góc AHB=góc BAC=90o

Góc B chung 

=> ΔABC đồng dạng ΔHBA (g.g)

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)

2. Xét ΔHBI và ΔABE có:

góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)

góc BAE=góc IHB=90o

=>ΔHBI đồng dạng ΔABE (g.g)

 

 

Nhân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2023 lúc 14:38

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>AC/HA=AB/HB=BC/AB

=>AB^2=BH*BC; AC*AB=AH*BC

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạngvới ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

d: AI/IC=AB/BC

KH/AH=BH/BA

mà AB/BC=BH/BA

nên AI/IC=KH/AH

Ánh Nguyệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2023 lúc 23:23

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng vơi ΔABC

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BH=12^2/20=7,2cm

c: \(S_{ABC}=\dfrac{1}{2}\cdot12\cdot16=6\cdot16=96\left(cm^2\right)\)

Giang Le
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 3 2023 lúc 8:11

a.

Xét hai tam giác vuông ABC và HBA có:

\(\left\{{}\begin{matrix}\widehat{HBA}\text{ chung}\\\widehat{BAC}=\widehat{BHA}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

b.

Do BD là phân giác góc B, áp dụng định lý phân giác cho tam giác ABC:

\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (1)

Do BI là phân giác góc B, áp dụng định lý phân giác cho tam giác ABH:

\(\dfrac{HI}{AI}=\dfrac{BH}{AB}\) (2)

Mặt khác, từ câu a do \(\Delta ABC\sim\Delta HBA\Rightarrow\dfrac{AB}{BH}=\dfrac{BC}{BA}\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{HI}{IA}=\dfrac{AD}{DC}\)

Nguyễn Việt Lâm
19 tháng 3 2023 lúc 8:11

loading...

1234
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 5 2022 lúc 23:40

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó:ΔHBA\(\sim\)ΔHAC

c: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(BC=\dfrac{AB^2}{BH}=\dfrac{15^2}{9}=25\left(cm\right)\)

\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)

d: ta có: ΔHBA\(\sim\)ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

Hùng Chu
Xem chi tiết
D-low_Beatbox
8 tháng 6 2021 lúc 14:14

a, Xét ΔABC và ΔHBA có:

∠BAC chung, ∠BHA=∠BAC (=90o)

=> ΔABC ∼ ΔHBA (g.g)

b, Áp dụng đ/l Pitago vào △ABC ta có:

BC2=AB2+AC2 => BC=√(62+82)=10 (cm)

Ta có: SABC=\(\dfrac{1}{2}\)AB.AC=\(\dfrac{1}{2}\)AH.BC

=> 6.8=AH.10 => AH=4,8 (cm)

c, Xét △HAB và △HCA có:

∠BHA=∠CHA (=90o), ∠ABC=∠HAC (cùng phụ ∠BCA)

=> △HAB ∼ △HCA (g.g)

=> \(\dfrac{AB}{AC}=\dfrac{\text{△HAB}}{\text{△HCA}}\)=\(\dfrac{6}{8}\)=\(\dfrac{3}{4}\)

d, AD là đường p/g của △ABC => \(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)=\(\dfrac{AB+AC}{BD+DC}=\dfrac{14}{10}=\dfrac{7}{5}\)

=> \(\dfrac{AB}{BD}=\dfrac{7}{5}\) => \(\dfrac{6}{BD}=\dfrac{7}{5}\) => BD=\(\dfrac{30}{7}\) (cm)

=> \(\dfrac{AC}{DC}\)\(=\dfrac{7}{5}\) => \(\dfrac{8}{DC}=\dfrac{7}{5}\) => DC=\(\dfrac{40}{7}\) (cm)

 

Hằng Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 15:25

loading...