a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vơi ΔABC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BH=12^2/20=7,2cm
c: \(S_{ABC}=\dfrac{1}{2}\cdot12\cdot16=6\cdot16=96\left(cm^2\right)\)
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vơi ΔABC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BH=12^2/20=7,2cm
c: \(S_{ABC}=\dfrac{1}{2}\cdot12\cdot16=6\cdot16=96\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm a) Tính BC b) Vẽ đường cao AH. Chứng minh tam giác ABC đồng dạng tam giác HBA c) Tính HB,HC
cho tam giác ABC vuông tại A có AB<AC . Kẻ đường cao AH . E,F lần lượt là hình chiếu của điểm H trên AB và AC.
a/ chứng minh: tam giác ABC đồng dạng với tam giác HBA từ đó suy ra AB^2= BC.CH
b/ Chứng minh: AE.AB=AF.AC
C/Gọi O là trung điểm của BC . Qua H kẻ đường thẳng song song với EF cắt AC tại M. K là giao điểm của AO với HM. Chứng minh: tam giác KAM đồng dạng với tam giác HCA
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh ABC đồng dạng với HBA và AB2 = BH.BC
b) Chứng minh.tam giác HAB đồng dạng với tam giác HCA, từ đó hãy tính AH nếu HC=9cm và HB=4cm
c) Tia phân giác của góc ABC cắt AH, AC theo thứ tự tại M và N.
cho tam giác ABC vuông tại A có AB<AC . Kẻ đường cao AH . E,F lần lượt là hình chiếu của điểm H trên AB và AC.
a/ chứng minh: tam giác ABC đồng dạng với tam giác HCA từ đó suy ra AB^2= BC.CH
b/ Chứng minh: AE.AB=AF.AC
C/Gọi O là trung điểm của BC . Qua H kẻ đường thẳng song song với EF cắt AC tại M. K là giao điểm của AO với HM. Chứng minh: tam giác KAM đồng dạng với tam giác HCA
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ
/ Cho tam giác ABC vuông tại A . Vẽ đường cao AH. CMR: a) ∆ABC ∽ ∆HBA. b) ∆ABC ∽ ∆HAC. c) ∆HAB ∽ ∆HAC. (Chứng minh bằng 2 cách)
cho tam giác abc vuông tại a, đường cao ah. a) Chứng minh: ah.bc = ab.ac, b) be là tia phân giác góc abc, be cắt ah tại d. chứng minh. tam giác abd đồng dạng tam giác cbe
Cho Tam Giác ABC Vuông Tại A, AB= 9cm; AC=12cm .Đường Cao AM Và Phân Giác BN. Gọi K Là Giáo Điểm Của AM VÀ BN a) Chứng Mình Tâm Giác MBA Đồng Dạng ABC b) Tính BG , MA
Cho tam giác nhọn ABC có góc C = 40 độ. Vẽ hình bình hành ABCD. Gọi AH, AK theo thứ tự là các đường cao của các tam giác ABC, ACD
a) Chứng minh rằng tam giác AKH đồng dạng với tam giác BCA
b) Tính số đo góc AKH
cho tam nhọn abc (ab nhỏ hơn ac) các đương cao ad be cf cắt nhau tại h
1.chứng minh tam giác eab đồng dạng với tam giác afc và ae.ac=af.ab
2.gọi I là trung điểm của canh BC .Đường thẳng đi qua I và vuông góc với IH cắt AC ,AH,AB lần luotj tại M,K,N
A.chứng minh AM.BI-BH.AK
B.chứng minh rằng NK/EI=MN/BC