Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Violet
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 0:54

7.

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(\frac{\pi}{4}-x\right).sin\left(\frac{\pi}{4}+x\right)\ne0\\cos\left(\frac{\pi}{4}-x\right)cos\left(\frac{\pi}{4}+x\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow cos2x\ne0\)

Phương trình tương đương:

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{2}-\frac{\pi}{4}-x\right)}=cos^44x\)

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{4}-x\right)}=cos^24x\)

\(\Leftrightarrow sin^42x+cos^42x=cos^44x\)

\(\Leftrightarrow\left(sin^22x+cos^22x\right)^2-2sin^22x.cos^22x=cos^44x\)

\(\Leftrightarrow1-\frac{1}{2}sin^24x=cos^44x\)

\(\Leftrightarrow2-\left(1-cos^24x\right)=2cos^44x\)

\(\Leftrightarrow2cos^44x-cos^24x-1=0\)

\(\Leftrightarrow\left(cos^24x-1\right)\left(2cos^24x+1\right)=0\)

\(\Leftrightarrow cos^24x-1=0\)

\(\Leftrightarrow sin^24x=0\Leftrightarrow sin4x=0\)

\(\Leftrightarrow2sin2x.cos2x=0\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 0:34

1.

\(cos2x+5=2\left(2-cosx\right)\left(sinx-cosx\right)\)

\(\Leftrightarrow2cos^2x+4=4sinx-4cosx-2sinx.cosx+2cos^2x\)

\(\Leftrightarrow2sinx.cosx-4\left(sinx-cosx\right)+4=0\)

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)

Pt trở thành:

\(1-t^2-4t+4=0\)

\(\Leftrightarrow t^2+4t-5=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 0:35

2.

\(\Leftrightarrow\left(sinx-1\right)^2+1=sin^23x\)

Ta có \(VT\ge1\) trong khi \(VP\le1\) với mọi x

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sinx-1=0\\sin^23x=1\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\)

3.

\(\Leftrightarrow-2cos2x.sinx-2sin2x=2\sqrt{2}\)

\(\Leftrightarrow cos2x.sinx+sin2x=-\sqrt{2}\)

Ta có:

\(VT^2=\left(cos2x.sinx+sin2x.1\right)^2\le\left(cos^22x+sin^22x\right)\left(sin^2x+1\right)\le1\left(1+1\right)=2\)

\(\Rightarrow VT\ge-\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}sinx=1\\cos2x=sinx.sin2x\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

Vậy pt vô nghiệm

Khách vãng lai đã xóa
Violet
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:33

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:33

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:34

6.

\(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-2\sqrt{3}cosx.sin2x.cos2x\)

\(\Leftrightarrow sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-\sqrt{3}cosx.sin4x\)

\(\Leftrightarrow sin4x\left(sinx+\sqrt{3}cosx\right)=\sqrt{2}sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin4x\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin4x.sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left(sin4x-\frac{\sqrt{2}}{2}\right)sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Ngô Chí Thành
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 10 2020 lúc 16:48

\(\Leftrightarrow-\sqrt{3}sinx-cosx=2sin2x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=sin\left(-2x\right)\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=sin\left(-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=-2x+k2\pi\\x+\frac{\pi}{6}=\pi+2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:50

a/

Đặt \(x+\frac{\pi}{3}=a\Rightarrow x=a-\frac{\pi}{3}\)

Pt trở thành:

\(cos^2a+4cos\left(\frac{\pi}{6}-a+\frac{\pi}{3}\right)=4\)

\(\Leftrightarrow cos^2a+4cos\left(\frac{\pi}{2}-a\right)-4=0\)

\(\Leftrightarrow cos^2a+4sina-4=0\)

\(\Leftrightarrow1-sin^2a+4sina-4=0\)

\(\Leftrightarrow-sin^2a+4sina-3=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{3}\right)=1\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{6}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:54

b/

Đặt \(x+\frac{\pi}{6}=a\Rightarrow x=a-\frac{\pi}{6}\)

Pt trở thành:

\(5cos2a=4sin\left(\frac{5\pi}{6}-a+\frac{\pi}{6}\right)-9\)

\(\Leftrightarrow5cos2x=4sin\left(\pi-a\right)-9\)

\(\Leftrightarrow5\left(1-2sin^2a\right)=4sina-9\)

\(\Leftrightarrow10sin^2a+4sina-14=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=-\frac{7}{5}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=1\)

\(\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 20:00

c/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=...\)

Kuramajiva
Xem chi tiết
Hồng Phúc
8 tháng 2 2022 lúc 14:46

a, ĐK: \(x\ne\dfrac{5\pi}{6}+k2\pi;x\ne\dfrac{\pi}{6}+k2\pi\)

\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)

\(\Leftrightarrow2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)=1-2sinx\)

\(\Leftrightarrow-cos\left(3x-\dfrac{\pi}{2}\right)+\sqrt{3}cos^3x.\dfrac{cos^2x-3sin^2x}{cos^2x}=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(cos^2x-3sin^2x\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(4cos^2x-3\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cos3x=-2sinx\)

\(\Leftrightarrow\dfrac{1}{2}sin3x-\dfrac{\sqrt{3}}{2}cos3x-sinx=0\)

\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{3}\right)-sinx=0\)

\(\Leftrightarrow2cos\left(2x-\dfrac{\pi}{6}\right)sin\left(x-\dfrac{\pi}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{6}=k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được:

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

Dương Linh
Xem chi tiết
Hồng Phúc
12 tháng 9 2021 lúc 20:47

\(\sqrt{3}cos\left(x+\dfrac{\pi}{2}\right)+sin\left(x-\dfrac{\pi}{2}\right)=2sin2x\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{2}\right)-\dfrac{1}{2}cos\left(\dfrac{\pi}{2}-\dfrac{\pi}{2}+x\right)=sin2x\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx+sin2x=0\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)+sin2x=0\)

\(\Leftrightarrow2sin\left(\dfrac{3x}{2}+\dfrac{\pi}{12}\right).cos\left(\dfrac{\pi}{12}-\dfrac{x}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(\dfrac{3x}{2}+\dfrac{\pi}{12}\right)=0\\cos\left(\dfrac{\pi}{12}-\dfrac{x}{2}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x}{2}+\dfrac{\pi}{12}=k\pi\\\dfrac{\pi}{12}-\dfrac{x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\\x=-\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Ryoji
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2019 lúc 7:10

\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)

\(=sinx+cosx-cosx=sinx\)

\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)

\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)

\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)

Trang Nana
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 6 2020 lúc 6:05

\(A=cos\left(6\pi+\pi-x\right)+sin\left(2\pi+\frac{\pi}{2}-x\right)+tan^2\left(\pi+\frac{\pi}{2}-x\right)-\frac{1}{sin^2\left(7\pi+\pi+x\right)}\)

\(=cos\left(\pi-x\right)+sin\left(\frac{\pi}{2}-x\right)+tan^2\left(\frac{\pi}{2}-x\right)-\frac{1}{sin^2\left(\pi+x\right)}\)

\(=-cosx+cosx+cot^2x-\frac{1}{sin^2x}\)

\(=cot^2x-\left(1+cot^2x\right)=-1\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2020 lúc 0:22

a.

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{4\pi}{3};\frac{5\pi}{3}\right\}\)

b.

\(\Leftrightarrow sin2x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-30^0+k360^0\\2x=210^0+k360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-15^0+k180^0\\x=105^0+k180^0\end{matrix}\right.\)

Pt vô nghiệm trên khoảng đã cho

Nguyễn Việt Lâm
17 tháng 9 2020 lúc 0:24

c.

\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;\frac{2\pi}{3}\right\}\)

d.

\(\Leftrightarrow cos^2x\left(cosx-2\right)=0\)

\(\Leftrightarrow cosx=0\)

\(\Leftrightarrow x=90^0+k180^0\)

\(\Rightarrow x=\left\{90^0;270^0;450^0;630^0\right\}\)