tan2x+cot2x=1+cos2(3x+\(\frac{\pi}{4}\))
Giair các pt lượng giác sau:
1) \(sin\left(x-\frac{\pi}{4}\right)\left(2cos+\sqrt{2}\right)tan2x=0\)
2) \(tan2x.sinx+3\left(sin-\sqrt{3}tan2x\right)-3\sqrt{3}=0\)
3) \(\frac{cos2x}{sin\left(x+\frac{3\pi}{4}\right)}=\frac{sin\left(x+\frac{3\pi}{4}\right)}{cos2x}\)
4) \(\left(\frac{tanx-1}{tanx+1}+cot2x\right)\left(3tan-\sqrt{3}\right)=0;0< x< \pi\)
a/ ĐKXĐ: \(cos2x\ne0\)
\(\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Rightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
Pt tương đương:
\(\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\2cosx+\sqrt{2}=0\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\cosx=cos\left(\frac{3\pi}{4}\right)\\2x=k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\left(l\right)\\x=\frac{3\pi}{4}+k2\pi\left(l\right)\\x=-\frac{3\pi}{4}+k2\pi\left(l\right)\\x=\frac{k\pi}{2}\end{matrix}\right.\) \(\Rightarrow x=\frac{k\pi}{2}\)
b/
ĐKXĐ: \(x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
\(\Leftrightarrow tan2x.sinx+3sinx-\sqrt{3}tan2x-3\sqrt{3}=0\)
\(\Leftrightarrow sinx\left(tan2x+3\right)-\sqrt{3}\left(tan2x+3\right)=0\)
\(\Leftrightarrow\left(sinx-\sqrt{3}\right)\left(tan2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\sqrt{3}>1\left(vn\right)\\tan2x=-3\end{matrix}\right.\)
\(\Rightarrow2x=arctan\left(-3\right)+k\pi\)
\(\Rightarrow x=\frac{arctan\left(-2\right)}{2}+\frac{k\pi}{2}\)
c/
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x+\frac{3\pi}{4}\right)\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+\frac{3\pi}{4}\ne k\pi\\2x\ne\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne-\frac{3\pi}{4}+k\pi\\x\ne\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\) \(\Rightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
Pt tương đương:
\(cos^22x=sin^2\left(x+\frac{3\pi}{4}\right)\)
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{3\pi}{2}\right)\)
\(\Leftrightarrow cos4x=-cos\left(2x+\frac{3\pi}{2}\right)=cos\left(2x+\frac{\pi}{2}\right)\)
\(\Rightarrow\left[{}\begin{matrix}4x=2x+\frac{\pi}{2}+k2\pi\\4x=-2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\left(l\right)\\x=-\frac{\pi}{12}+\frac{k\pi}{3}\end{matrix}\right.\)
chứng minh
a> cot2x/1+cot2x . 1+tan2x/tan2x = tan2x+cot2x/1=tan4x
b>tan2x-cos2x/sin2x + cot2x-sin2x/cos2x = 2
a: \(VT=\dfrac{cot^2x}{1+cot^2x}\cdot\dfrac{1+tan^2x}{tan^2x}\)
\(=\dfrac{cot^2x}{\dfrac{1}{sin^2x}}\cdot\dfrac{\dfrac{1}{cos^2x}}{tan^2x}\)
\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{1}{cos^2x}:\dfrac{1}{sin^2x}\)
\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{sin^2x}{cos^2x}\)
\(=cot^2x\)
\(VP=\dfrac{tan^2x+cot^2x}{1+tan^4x}=\dfrac{\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}}{1+\dfrac{sin^4x}{cos^4x}}\)
\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}:\dfrac{cos^4x+sin^4x}{cos^4x}\)
\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}\cdot\dfrac{cos^4x}{cos^4x+sin^4x}=\dfrac{cos^2x}{sin^2x}=cot^2x\)
=>VT=VP
b:
\(\dfrac{tan^2x-cos^2x}{sin^2x}+\dfrac{cot^2x-sin^2x}{cos^2x}\)
\(=\dfrac{\left(\dfrac{sinx}{cosx}\right)^2-cos^2x}{sin^2x}+\dfrac{\left(\dfrac{cosx}{sinx}\right)^2-sin^2x}{cos^2x}\)
\(=\dfrac{sin^2x-cos^4x}{cos^2x\cdot sin^2x}+\dfrac{cos^2x-sin^4x}{sin^2x\cdot cos^2x}\)
\(=\dfrac{sin^2x+cos^2x-cos^4x-sin^4x}{cos^2x\cdot sin^2x}\)
\(=\dfrac{1-\left(cos^2x+sin^2x\right)^2+2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}\)
\(=\dfrac{2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}=2\)
giải phương trình
a) \(sin\left(x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
b) \(cos\left(x+\dfrac{\pi}{4}\right)=cos\dfrac{3\pi}{4}\)
c) \(tan2x=tan\left(x+\dfrac{\pi}{3}\right)\)
d) \(cot2x=-\dfrac{\sqrt{3}}{3}\)
a: \(sin\left(x-\dfrac{\Omega}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
=>\(sin\left(x-\dfrac{\Omega}{4}\right)=sin\left(-\dfrac{\Omega}{4}\right)\)
=>\(\left[{}\begin{matrix}x-\dfrac{\Omega}{4}=-\dfrac{\Omega}{4}+k2\Omega\\x-\dfrac{\Omega}{4}=\Omega+\dfrac{\Omega}{4}+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{3}{2}\Omega+k2\Omega\end{matrix}\right.\)
b: \(cos\left(x+\dfrac{\Omega}{4}\right)=cos\left(\dfrac{3}{4}\Omega\right)\)
=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{4}=\dfrac{3}{4}\Omega+k2\Omega\\x+\dfrac{\Omega}{4}=-\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\Omega+k2\Omega\\x=-\Omega+k2\Omega\end{matrix}\right.\)
c: ĐKXĐ: \(\left\{{}\begin{matrix}2x< >\dfrac{\Omega}{2}+k\Omega\\x+\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< >\dfrac{\Omega}{4}+\dfrac{k\Omega}{2}\\x< >\dfrac{1}{6}\Omega+k\Omega\end{matrix}\right.\)
\(tan2x=tan\left(x+\dfrac{\Omega}{3}\right)\)
=>\(2x=x+\dfrac{\Omega}{3}+k\Omega\)
=>\(x=\dfrac{\Omega}{3}+k\Omega\)
d: ĐKXĐ: \(2x< >k\Omega\)
=>\(x< >\dfrac{k\Omega}{2}\)
\(cot2x=-\dfrac{\sqrt{3}}{3}\)
=>\(cot2x=cot\left(-\dfrac{\Omega}{3}\right)\)
=>\(2x=-\dfrac{\Omega}{3}+k\Omega\)
=>\(x=-\dfrac{\Omega}{6}+\dfrac{k\Omega}{2}\)
Rút gọn A=\(\frac{\tan2x+\cot2x}{1+\cos^22x}\)
tìm tập xác định của hàm số
1.y=\(cot\left(\dfrac{\pi}{3}-x\right)\)
2.y=\(\dfrac{tan2x-1}{\sqrt{1+sinx}+1}\)
3.y=\(\sqrt{\sqrt{1+sinx}-\sqrt{2}}\)
4.y=\(\dfrac{3cos4x-3}{\sqrt{2-2cosx}-2}\)
5.y=\(\dfrac{1-cot3x}{1-\sqrt{1+sin3x}}\)
6.y=\(cot2x+cotx\)
1. \(sin\left(\dfrac{\pi}{3}-x\right)\ne0\Leftrightarrow\dfrac{\pi}{3}-x\ne k\pi\Leftrightarrow x\ne\dfrac{\pi}{3}-k\pi\)
2. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
3. \(\sqrt{1+sinx}-\sqrt{2}\ge0\Leftrightarrow1+sinx\ge2\Leftrightarrow sinx\ge1\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
4. \(\sqrt{2-2cosx}-2\ne0\Leftrightarrow2-2cosx\ne4\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne\pi+k2\pi\)
5. \(1-\sqrt{1+sin3x}\ne0\Leftrightarrow sin3x\ne0\Leftrightarrow3x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{3}\)
\(tan\left(\frac{\Pi}{3}-3x\right)+tan2x+tanx=\sqrt{3}\)
\(4sin^2\left(x+\frac{\Pi}{6}\right)+sin2x=1\)
chứng minh rằng
\(\frac{2}{sin4x}\) - tan2x = cot2x
\(\frac{2}{sin4x}-tan2x=\frac{2}{2sin2x.cos2x}-\frac{sin2x}{cos2x}=\frac{1}{cos2x}\left(\frac{1}{sin2x}-sin2x\right)\)
\(=\frac{1}{cos2x}\left(\frac{1-sin^22x}{sin2x}\right)=\frac{1}{cos2x}\frac{cos^22x}{sin2x}=\frac{cos2x}{sin2x}=cot2x\)
\(tan\left(\frac{\Pi}{3}-3x\right)+tan2x+tanx=\sqrt{3}\)
\(tan\left(\frac{\Pi}{3}-3x\right)+tan2x+tanx=\sqrt{3}\)
\(tana+tanb=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)
\(tana-tanb=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)
\(tan\left(\frac{\pi}{3}-3x\right)-tan\left(\frac{\pi}{3}\right)+tan2x+tanx=0\)
\(\Leftrightarrow\frac{-sin3x}{cos\left(\frac{\pi}{3}-3x\right).cos\left(\frac{\pi}{3}\right)}+\frac{sin3x}{cosx.cos2x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cosx.cos2x=\frac{1}{2}cos\left(\frac{\pi}{3}-3x\right)\end{matrix}\right.\)
Pt dưới \(\Leftrightarrow cos3x+cosx=cos\left(\frac{\pi}{3}-3x\right)\)
\(\Leftrightarrow cos3x-cos\left(\frac{\pi}{3}-3x\right)+cosx=0\)
\(\Leftrightarrow-2sin\left(\frac{\pi}{6}\right).sin\left(3x-\frac{\pi}{6}\right)+cosx=0\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=-cosx=sin\left(x-\frac{\pi}{2}\right)\)
Tính các giá trị lượng giác của góc \(\alpha \), biết:
a, \(cos2\alpha = \frac{2}{5}, - \frac{\pi }{2} < \alpha < 0\)
b, \(\sin 2\alpha = - \frac{4}{9},\frac{\pi }{2} < \alpha < \frac{{3\pi }}{4}\)
\(a,cos2\alpha=2cos^2\alpha-1=\dfrac{2}{5}\\ \Leftrightarrow cos^2\alpha=\dfrac{7}{10}\Rightarrow cos\alpha=\pm\dfrac{\sqrt{70}}{10}\)
Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow cos\alpha=\dfrac{\sqrt{70}}{10}\)
Ta có:
\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=1-\dfrac{7}{10}=\dfrac{3}{10}\\ \Rightarrow sin\alpha=\pm\sqrt{30}10\)
Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow sin\alpha=-\dfrac{\sqrt{30}}{10}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{30}}{10}}{\dfrac{-\sqrt{70}}{10}}=-\dfrac{\sqrt{21}}{7}\\ cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{-\dfrac{\sqrt{21}}{7}}=-\dfrac{\sqrt{21}}{3}\)
\(b,sin^22\alpha+cos^22\alpha=1\\ \Rightarrow cos2\alpha=\sqrt{1-\left(-\dfrac{4}{9}\right)^2}=\pm\dfrac{\sqrt{65}}{9}\)
Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow\pi< 2\alpha< \dfrac{3\pi}{2}\Rightarrow cos2\alpha=-\dfrac{\sqrt{65}}{9}\)
\(cos2\alpha=2cos^2\alpha-1=-\dfrac{\sqrt{65}}{9}\\ \Rightarrow cos\alpha=\pm\sqrt{\dfrac{9-\sqrt{65}}{18}}\)
Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow cos\alpha=-\sqrt{\dfrac{9-\sqrt{65}}{18}}\)
\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=\dfrac{9+\sqrt{65}}{18}\\ \Rightarrow sin\alpha=\pm\sqrt{\dfrac{9+\sqrt{65}}{18}}\)
Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow sin\alpha=\sqrt{\dfrac{9+\sqrt{65}}{18}}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\sqrt{\dfrac{9+\sqrt{65}}{18}}}{-\sqrt{\dfrac{9-\sqrt{65}}{18}}}\approx-4,266\\ cot\alpha=\dfrac{1}{tan\alpha}\approx-0,234\)