Cho\(\Delta\)ABC nhọn, đường cao AM.BN.CF cắt nhau tại H
Dựng hbh BHCD
1,CM:\(\Delta APN\sim\Delta ACB\) VÀ ABDC NỘI TIẾP
2,gọi E là giao điểm của AD VÀ BN
CM:AB.AH=AE.AC
Cho \(\Delta ABC\) nhọn có 3 đường cao AD;BE; CF cắt nhau tại H a/ CM: CH x CF = CD x CB b/CM \(\Delta BCD\sim\Delta FCD\) c/ Gọi K là giao điểm của EF và AH: CM FH là đường phân giác của\(\Delta FDK\) và ADxHK= AK x DH
Cho \(\Delta ABC\) nhọn, các đường cao \(AD,BE,CF\) cắt nhau tại \(H\)
a) \(Cm:\Delta AEB\) và \(\Delta AFC\) đồng dạng và \(AF.AB=AE.AC\)
b) \(Cm\): góc \(BAD\)\(=\) góc\(BEF\)
c) Gọi \(AI\) là tia phân giác của góc \(BAC\), tia \(AI\) cắt \(FE\) tại \(O\)
\(Cm:IB.OF=IC.OE\)
a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét tứ giác AFHE có
góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
=>góc FAH=góc FEH
=>goc BAD=góc BEF
Cho \(\Delta\)ABC nhọn (AB<AC),các đường cao AD,BE,CH cắt nhau tại H.Chứng minh:
1)AE.AC=AF.AB
2)\(\Delta\)AEF đồng dạng \(\Delta\)ACB
3)\(\Delta\)FHE đồng dạng \(\Delta\)BHC
4)DH là phân giác của góc EDF
5)BF.BA+CE.CA=\(^{BC^2}\)
6)Gọi K là giao điểm của EF và BC.Chứng minh:KE.KF=KB.KC
3) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB\(\sim\)ΔEHC(g-g)
Suy ra: \(\dfrac{FH}{EH}=\dfrac{BH}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)
Xét ΔFHE và ΔBHC có
\(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)(cmt)
\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔFHE\(\sim\)ΔBHC(c-g-c)
1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(đpcm)
2) Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)
Cho\(\Delta ABC\) nhọn nội tiếp (O) , hai đường cao BE và AD cắt nhau tại H
a) chứng minh 4 điểm C, H, D, E cùng thuộc 1 đường tròn
b) Ở ngoài \(\Delta ABC\) vẽ nửa đường tròn đường kính AC, đường thẳng BE cắt đường tròn đó tại F. CM : \(AF^2=AH.AD\)
a) Ta có AD là đường cao của △ABC (gt)
=> AD⊥BC => \(\widehat{CDA} = 90^o\)
Tương tự ta có \(\widehat{CEB}=90^o \)
Tứ giác CEHD có : \(\widehat{CDA} + \widehat{CEB} = 90^o + 90^o = 180^o \) => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn
b) △AEH và △ADC , có
\(\begin{cases} \widehat{AEH}=\widehat{ADC}=90^o\\ \widehat{CAD} ( góc chung ) \end{cases} \)=> △AEH đồng dạng với △ADC ( g.g)
=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC} \) ( tỉ số đồng dạng ) => AE.AC = AH.AD (1)
Ta có \(\widehat{AFC} = 90^o \) ( góc nội tiếp chắn nửa đường tròn )
△AFC vuông tại F , có FE là đường cao ( BF ⊥ AC tại E ) => \(AF^2\) = AE.AC ( hệ thức lượng ) (2)
Từ (1) và (2) => \(AF^2= AH.AD\)
cho tam giác ABC nhọn , các đường cao AM BN CP của tam giác ABC cắt nhau tại H .Dựng hình bình hành BHCD.
a,CM: t/g APHN và ABDC là tứ giác nội tiếp.
b,gọi E là giao điểm của AD và BN.CM:AB.AH=AE.AC.
c, giả sử B,C cố định Athay đổi sao cho tam giác ABC nhọn và góc BAC ko đổi.CMR:đường tròn ngoại tiếp tứ giác APHN có diện tích không đổi.
a) tứ giácAPHN có góc P+góc N =180 độnên nội tiếp đc
vìABDC là HBH nên HC song song BD,lại có CH vuông góc ABnên :góc ABD =90độ
chứng minh tương tự ta cũng có góc ACD=90 Độ
=> góc ABD+ góc ACD=180độ => tứ giác ABCD nôi tiếp đường tròn đường AD
b)Xét 2 tam giác ABE và ACH có :
ABE=ACH ( cùng phụ với BAC ) (1)
BAE phụ với BDA;BDA=BCA (góc nt cùng chắn CUNG AB )
CAH phụ với BCA(2)
Từ (1) và (2) suy ra 2 tam giác ABE, ACH đồng dạng
=>\(\dfrac{AB}{AE}=\dfrac{AC}{AH}=>AB\cdot AH=AE\cdot AC\)
C)
Gọi I là trung điểm BC => I cố định (Do B và C cố định)
Gọi O là trung điểm AD => O cố định ( Do BAC không đổi, B và C cố định, O là tâm đường tròn ngoại tiếp tam giác ABC )
=>độ dài OI không đổi
ABDC là hình bình hành => I là trung điểm HD
=>OI=\(\dfrac{1}{2}\)AH ( OI là đường trung bình tam giác ADH)
=>độ dài AH không đổi
Vì AH là đường kính đường tròn ngoại tiếp tứ giác APHN, độ dài AH không đổi => độ dài bán kính đường tròn ngoại tiếp tứ giác APHN không đổi => đường tròn ngoại tiếp tứ giác APHN có diện tích không đổi
Cho \(\Delta\)ABC nhọn,các đường cao AD,BE,CF cắt nhau tại H.Chứng minh:
1)AE.AC=AF.AB
2)AD.AH=FH.HC=HE.HB
3)Góc AEF=góc ABC
4)FH là phân giác của góc DFE
5)Gọi K là giao điểm của AD và EF.Chứng minh:HK.AD=AK.DH
1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AB\cdot AF\)(đpcm)
3) Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)(hai góc tương ứng)(Đpcm)
cho tam giác ABC nhọn , các đường cao AM BN CP của tam giác ABC cắt nhau tại H .Dựng hình bình hành BHCD.
a,CM: t/g APHN và ABDC là tứ giác nội tiếp.
b,gọi E là giao điểm của AD và BN.CM:AB.AH=AE.AC.
c, giả sử B,C cố định Athay đổi sao cho tam giác ABC nhọn và góc BAC ko đổi.CMR:đường tròn ngoại tiếp tứ giác APHN không đổi.
cảm ơn nhiều :33
cho tam giác ABC nhọn nội tiếp đường tròn (O) ,có 2 đường cao BE và CF.Hai tiếp tuyến của O tại B ,C cắt nhau tại K.Đường thẳng AK cắt đường tròn (O) tại D
a) chứng minh BFEC nội tiếp
b) chứng minh \(\Delta\)KBD \(\sim\)\(\Delta\)KAB và AB.CD=AC.BD
c) chứng minh AK đi qua trung điểm EF
ΔABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a, CM: ΔAEB ∼ΔAFC⇒ AE. AC=AF. AB
b, CM : Δ AEF∼ ΔABC ∠AFE=∠ACB
c, CM: BF. BA= BH. BE=BD. BC
d, ∠BAH=∠BEF.∠ BED=∠BCH⇒ EH là tia phân giác của ∠DEF
e, Vẽ HQ ⊥ DF tại Q; HV ⊥ FE tại V. CM: QV song song AB
f, QV cắt AD tại I . CM:∠ BAD= ∠VIH=∠VEH
g, CM: ∠IVE= ∠IHE⇒ ΔKIE ∼ΔKVH ( K là giao điểm của EF và AH)
h, CM: DI⊥ IE
k, EI cắt DE tại S. CM: I là trung điểm của ES