Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Mai Thảo
Xem chi tiết
Thuỳ Lê Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2023 lúc 8:23

a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có

góc BAE chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

b: Xét tứ giác AFHE có

góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

=>góc FAH=góc FEH

=>goc BAD=góc BEF

Ctuu
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 21:50

3) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{FH}{EH}=\dfrac{BH}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)

Xét ΔFHE và ΔBHC có 

\(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)(cmt)

\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔFHE\(\sim\)ΔBHC(c-g-c)

Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 21:46

1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(đpcm)

Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 21:48

2) Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

 Huyền Trang
Xem chi tiết
Lê Bảo Nghiêm
29 tháng 1 2021 lúc 21:48

a) Ta có  AD là đường cao của △ABC (gt) 

=> AD⊥BC => \(\widehat{CDA} = 90^o\)

Tương tự ta có \(\widehat{CEB}=90^o \)

Tứ giác CEHD có : \(\widehat{CDA} + \widehat{CEB} = 90^o + 90^o = 180^o \) => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn 

b) △AEH và △ADC , có  

\(\begin{cases} \widehat{AEH}=\widehat{ADC}=90^o\\ \widehat{CAD} ( góc chung ) \end{cases} \)=> △AEH đồng dạng với △ADC ( g.g) 

=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC} \) ( tỉ số đồng dạng ) => AE.AC = AH.AD (1)

Ta có \(\widehat{AFC} = 90^o \) ( góc nội tiếp chắn nửa đường tròn ) 

△AFC vuông tại F , có FE là đường cao ( BF ⊥ AC tại E ) => \(AF^2\) = AE.AC ( hệ thức lượng ) (2) 

Từ (1) và (2) => \(AF^2= AH.AD\)

Phạm Hồng Nguyên
Xem chi tiết
Nguyễn Thị Trà My
18 tháng 5 2021 lúc 20:52

a) tứ giácAPHN có góc P+góc N =180 độnên nội tiếp đc

vìABDC là HBH nên HC  song song BD,lại có CH vuông góc ABnên :góc ABD =90độ

chứng minh tương tự ta cũng có góc ACD=90 Độ

=> góc ABD+ góc ACD=180độ => tứ giác ABCD nôi tiếp đường tròn đường AD

b)Xét 2 tam giác ABE và ACH có :

 ABE=ACH ( cùng phụ với BAC )  (1)

BAE phụ với BDA;BDA=BCA  (góc nt cùng chắn CUNG AB )

CAH phụ với BCA(2)

Từ (1) và (2) suy ra 2 tam giác ABE, ACH đồng dạng 

=>\(\dfrac{AB}{AE}=\dfrac{AC}{AH}=>AB\cdot AH=AE\cdot AC\)

C)

Gọi I là trung điểm BC  => I cố định (Do B và C cố định)

 Gọi O là trung điểm AD => O cố định ( Do BAC không đổi, B và C cố định, O là tâm đường tròn ngoại tiếp tam giác ABC )

=>độ dài OI không đổi

ABDC là hình bình hành => I là trung điểm HD

=>OI=\(\dfrac{1}{2}\)AH ( OI là đường trung bình tam giác ADH)

=>độ dài AH không đổi    

Vì AH là đường kính đường tròn ngoại tiếp tứ giác APHN, độ dài AH không đổi => độ dài bán kính đường tròn ngoại tiếp tứ giác APHN không đổi => đường tròn ngoại tiếp tứ giác APHN có diện tích không đổi

 

 

Ctuu
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2021 lúc 20:17

1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AB\cdot AF\)(đpcm)

Nguyễn Lê Phước Thịnh
17 tháng 4 2021 lúc 20:18

3) Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)(hai góc tương ứng)(Đpcm)

nguyễn tạ lâm
Xem chi tiết
Lưu Bảo Huy
Xem chi tiết
Lưu Bảo Huy
23 tháng 5 2022 lúc 21:21

câu c theo nha

câu c nha

 

Nguyễn dương an
23 tháng 5 2022 lúc 21:30

c

phạm Thị Hà Nhi
Xem chi tiết