Tính lim \(\frac{2n+1}{1+n}\) được kết quả là :
A. 2
B. 0
C. \(\frac{1}{2}\)
D. 1
Tính các giới hạn sau:
a) \(\lim \frac{{5n + 1}}{{2n}};\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}};\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right);\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}.\)
a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \frac{{5 + \frac{1}{n}}}{2} = \frac{{5 + 0}}{2} = \frac{5}{2}\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{6 + 0 + 0}}{{5 + 0}} = \frac{6}{5}\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\sqrt {1 + 0 + 0} }}{{6 + 0}} = \frac{1}{6}\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 0\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{1 + 0}}{4} = \frac{1}{4}\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\)
Ta có \(\lim \left( {2 + \frac{1}{n}} \right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2 > 0;\lim {3^n} = + \infty \Rightarrow \lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = 0\)
Tìm các giới hạn sau:
a) \(\lim \frac{{ - 2n + 1}}{n}\)
b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n}\)
c) \(\lim \frac{4}{{2n + 1}}\)
d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}}\)
a) \(\lim \frac{{ - 2n + 1}}{n} = \lim \frac{{n\left( { - 2 + \frac{1}{n}} \right)}}{n} = \lim \left( { - 2 + \frac{1}{n}} \right) = - 2\)
b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {16 - \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {16 - \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {16 - \frac{2}{{{n^2}}}} = 4\)
c) \(\lim \frac{4}{{2n + 1}} = \lim \frac{4}{{n\left( {2 + \frac{1}{n}} \right)}} = \lim \left( {\frac{4}{n}.\frac{1}{{2 + \frac{1}{n}}}} \right) = \lim \frac{4}{n}.\lim \frac{1}{{2 + \frac{1}{n}}} = 0\)
d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}} = \lim \frac{{{n^2}\left( {1 - \frac{2}{n} + \frac{3}{{{n^2}}}} \right)}}{{2{n^2}}} = \lim \frac{{1 - \frac{2}{n} + \frac{3}{{{n^2}}}}}{2} = \frac{1}{2}\)
17/lim\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\)
18/lim\(\frac{1+a+a^2+...+a^n}{1+b+b^2+...+b^n}\left(\left|a\right|< 1;\left|b\right|< 1\right)\)
19/lim\(\frac{1-2+3-4+...+\left(2n-1\right)-2n}{2n+1}\)
Tính \(lim\frac{\sqrt{9n^2-n+1}}{4n-2}\) . Kết quả là :
A. 2/3
B. -1/2
C. 0
D. 3/4
Lời giải:
Nếu $n\to +\infty$
\(\lim\limits _{n\to +\infty}\frac{\sqrt{9n^2-9n+1}}{4n-2}=\lim\limits _{n\to +\infty}\frac{\sqrt{\frac{9n^2-n+1}{n}}}{\frac{4n-2}{n}}=\lim\limits _{n\to +\infty}\frac{\sqrt{9-\frac{1}{n}+\frac{1}{n^2}}}{4-\frac{2}{n}}=\frac{\sqrt{9}}{4}=\frac{3}{4}\)
Đáp án D
tìm các giới hạn
a)lim(\(\sqrt{n+1}-\sqrt{n}\))
b)lim\(\left(\sqrt{n+5n+1}-\sqrt{n^2-n}\right)\)
c)lim\(\left(\sqrt{3n^2+2n-1}-\sqrt{3n^2-4n+8}\right)\)
d)lim\(\frac{2^n+6^n-4^{n+1}}{3^n+6^{n+1}}\)
e)lim\(\frac{3^n-4^n+5^n}{3^n+4^n-5^n}\)
f)lim\(\frac{1+3+5+.....+\left(2n+1\right)}{3n^2+4}\)
g)lim[\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{n\left(n+1\right)}\)]
h)lim\(\frac{1^2+2^2+3^2+.....+n^2}{n\left(n+1\right)\left(n+2\right)}\)
a/ \(=lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\infty}=0\)
b/ \(=lim\frac{6n+1}{\sqrt{n^2+5n+1}+\sqrt{n^2-n}}=\frac{6+\frac{1}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{1}{n}}}=\frac{6}{1+1}=3\)
c/ \(=lim\frac{6n-9}{\sqrt{3n^2+2n-1}+\sqrt{3n^2-4n+8}}=lim\frac{6-\frac{9}{n}}{\sqrt{3+\frac{2}{n}-\frac{1}{n^2}}+\sqrt{3-\frac{4}{n}+\frac{8}{n^2}}}=\frac{6}{\sqrt{3}+\sqrt{3}}=\sqrt{3}\)
d/ \(=lim\frac{\left(\frac{2}{6}\right)^n+1-4\left(\frac{4}{6}\right)^n}{\left(\frac{3}{6}\right)^n+6}=\frac{1}{6}\)
e/ \(=lim\frac{\left(\frac{3}{5}\right)^n-\left(\frac{4}{5}\right)^n+1}{\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-1}=\frac{1}{-1}=-1\)
f/ Ta có công thức:
\(1+3+...+\left(2n+1\right)^2=\left(n+1\right)^2\)
\(\Rightarrow lim\frac{1+3+...+2n+1}{3n^2+4}=lim\frac{\left(n+1\right)^2}{3n^2+4}=lim\frac{\left(1+\frac{1}{n}\right)^2}{3+\frac{4}{n^2}}=\frac{1}{3}\)
g/ \(=lim\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\right)=lim\left(1-\frac{1}{n+1}\right)=1-0=1\)
h/ Ta có: \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(\Rightarrow lim\frac{n\left(n+1\right)\left(2n+1\right)}{6n\left(n+1\right)\left(n+2\right)}=lim\frac{2n+1}{6n+12}=lim\frac{2+\frac{1}{n}}{6+\frac{12}{n}}=\frac{2}{6}=\frac{1}{3}\)
Mọi người giải giúp mk với ạ
Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1.
Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1
Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10
Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10.
Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, .
Câu 318. Cho dãy số có giới hạn (un) xác định bởi : -,n 21 2-u C. -1. D. B. 1. A. 0. 1 1 1 [2
Câu 319. Tìm giá trị đúng của S = 2| 1+-+ 2 48 2" C. 2 2. D. B. 2. A. 2 +1. 4" +2"+1 bằng :
Câu 320. Lim4 3" + 4"+2 1 B. D. +oo. A. 0. In+1-4
Câu 321. Tính giới hạn: lim Vn+1+n C.-1. D. B.O. A. 1. +(2n +1)- * 3n +4 1+3+5+...+ 3n 14,
Câu 322. Tính giới hạn: lim C. 2 3 B. D. 1. A. 0. 1 nlat1) +......+
Câu 323. Tính giới hạn: lim n(n+1) 1.2 2.3 3 C. 21 D. Không có giới hạn. B. 1. A. 0.
Phép tính \(\frac{{ - 3}}{4}.\left( {\frac{2}{3} - \frac{2}{6}} \right)\) có kết quả là:
(A) 0 (B) \(\frac{{ - 5}}{6}\)
(C) \(\frac{1}{4}\) (D) \(\frac{{ - 1}}{4}\).
\(\begin{array}{l}\frac{{ - 3}}{4}.\left( {\frac{2}{3} - \frac{2}{6}} \right) = \frac{{ - 3}}{4}.\left( {\frac{4}{6} - \frac{2}{6}} \right)\\ = \frac{{ - 3}}{4}.\frac{2}{6} = \frac{{ - 6}}{{24}} = \frac{{ - 1}}{4}\end{array}\)
=> Chọn D.
a)lim \(\frac{\left(2n+1\right)^2\left(n-1\right)}{\sqrt[3]{n^3+7n-2}}\)
b)lim [(2n-1)\(\sqrt{\frac{2n^2+5}{n^4+n^2+2}}\)]
c)lim [n(\(\sqrt[3]{n^3+n^2}-n\))]
a) lim \(\frac{\left(2n+1\right)^2\left(n-1\right)}{\sqrt[3]{n^3+7n-2}}\)
= lim \(\left(2n+1\right)^2.\frac{\left(1-\frac{1}{n}\right)}{\sqrt[3]{1+\frac{7}{n^2}-\frac{2}{n^3}}}\)
\(=+\infty\)
b) lim \(\left(2n-1\right)\sqrt{\frac{2n^2+5}{n^4+n^2+2}}\)
= lim \(\left(2-\frac{1}{n}\right)\sqrt{\frac{2+\frac{5}{n^2}}{1+\frac{1}{n^2}+\frac{2}{n^4}}}\)
=2.2 = 4
c ) = lim \(n.\frac{n^2}{\sqrt[3]{\left(n^3+n^2\right)^2+n\sqrt[3]{n^3+n^2}+n^2}}\)
= lim \(n.\frac{1}{\sqrt[3]{\left(1+\frac{1}{n}\right)^2+\sqrt[3]{1+\frac{1}{n}}+1}}\)
\(=+\infty\)
a) \(lim\frac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}\)
b) \(lim\frac{\left(2n-1\right)\left(n+1\right)\left(3n+4\right)}{\left(5-6n\right)^3}\)
c) \(lim\left(\sqrt{n^2+5n+1}-\sqrt{n^2-2}\right)\)
d) \(lim\frac{5\cdot3^n-6^{n+1}}{4\cdot2^n+6^n}\)
e) \(lim\left(-2n^3-3n^2+5n-2020\right)\)
a/ \(=lim\frac{\left(-\frac{2}{3}\right)^n+1}{-2.\left(-\frac{2}{3}\right)^n+3}=\frac{1}{3}\)
b/ \(=lim\frac{\left(2-\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\left(3+\frac{4}{n}\right)}{\left(\frac{5}{n}-6\right)^3}=\frac{2.1.3}{\left(-6\right)^3}=-\frac{1}{36}\)
c/ \(=lim\frac{5n+3}{\sqrt{n^2+5n+1}+\sqrt{n^2-2}}=\frac{5+\frac{3}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{2}{n}}}=\frac{5}{1+1}=\frac{5}{2}\)
d/ \(=lim\frac{5.\left(\frac{1}{2}\right)^n-6}{4.\left(\frac{1}{3}\right)^n+1}=\frac{-6}{1}=-6\)
e/ \(=-n^3\left(2+\frac{3}{n}-\frac{5}{n^2}+\frac{2020}{n^3}\right)=-\infty.2=-\infty\)