Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Bình An
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 22:13

a: CD vuông góc DA

CD vuông góc SA

=>CD vuông góc (SAD)

=>CD vuông góc SD

b: CD vuông góc AK

AK vuông góc SD

=>AK vuông góc (SCD)

=>SC vuông góc AK

BC vuông góc AH

AH vuông góc SB

=>AH vuông góc SC

=>SC vuông góc (AKH)

c: (SO;(ABCD))=(OS;OA)=góc SOA

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2019 lúc 10:04

Phương án A sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC); phương án B đúng vì AH ⊥(SBC) và AK ⊥ (SCD) nên SC ⊥ (AHK), từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc; phương án C và D đều sai vì chưa đủ điều kiện kết luận SC ⊥ (AHK)

Đáp án B

Khoa Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 4 2023 lúc 0:20

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

b: BC vuông góc AB

BC vuông góc SA
=>BC vuông góc (SAB)

=>BC vuông góc AK

mà AK vuông góc SB

nên AK vuông góc (SBC)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 16:13

Đáp án D

Sử dụng mối quan hệ vuông góc giữa đường thẳng với đường thẳng, đường thẳng với mặt phẳng.

- Hai mặt phẳng cùng vuông góc với đường thẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng đó.

- Một đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó.

- Một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Vì   S A B ⊥ A B C D S A D ⊥ A B C D S A B ∩ S A D = S A ⇒ S A ⊥ A B C D ⇒ S A ⊥ B C

Mà A H ⊥ S B  nên A H ⊥ S B C ⇒ A H ⊥ S C .

Tương tự ta có A K ⊥ S C D ⇒ A H ⊥ S C .

Do đó S C ⊥ A H K ⇒ S C ⊥ H K ⇒ A đúng.

  S A ⊥ A B C D ⇒ S A ⊥ A C ⇒ B đúng.

  B C ⊥ A H c m t ⇒ C đúng. 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 9 2017 lúc 16:20

Quyên Quyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2018 lúc 18:18

Phương án A sai vì AB và CB không vuông góc với giao tuyến SB của (SAB) và (SBC), nên góc ABC không phải là góc của hai mặt phẳng này; phương án B sai vì góc BAD không phải là góc của hai mặt phẳng (SAB) với mặt phẳng (SBC); phương án C sai vì AB ⊥ BC thì chưa đủ để kết luận AB vuông góc với mặt phẳng (SBC); phương án D đúng vì : BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA ⇒ (SBC) ⊥ (SAB)

Đáp án D

Mr_Zeapft
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 14:49

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

3: BC vuông góc SAB

=>AE vuông góc BC

mà AE vuông góc SB

nên AE vuông góc (SBC)

=>AE vuông góc SC

4: (SB;(SAC))=(SB;SD)=góc DSB

\(SD=\sqrt{SA^2+AD^2}=2a;SB=2a;DB=a\sqrt{2}\)

\(cosDSB=\dfrac{4a^2+4a^2-2a^2}{2\cdot2a\cdot2a}=\dfrac{3}{4}\)

=>góc DSB=41 độ

Binh Le Huu Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 14:49

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ