Cho (O), và điểm M nằm ngoài đường tròn. Vẽ tiếp tuyến MA, cát tuyến MBC
a. C/m: MA2 = MB .MC
b. Vẽ dây CD // AM. Cm: Tam giác ACD cân
Từ điểm M nằm ngoài đường tròn (O,R), vẽ tiếp tuyến MA, (A là tiếp điểm) Gọi E trung điểm AM, kẻ EI vuông góc Om tại I, AH vuông góc OM tại H.Qua M vẽ cát tuyến MBC có MB < MC và tia MC nằm giữa tia MA và MO.Vẽ tiếp tuyến IK tới (O) với K là tiếp điểm.
Chứng minh:
a. Tam giác MHK vuông tại K
b. Giả sử: BC = 3BM, D là trung điểm MC. Chứng minh: MC tiếp xúc với đường tròn ngoại tiếp tam giác ODH
Cho điểm M nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến MA ( A là tiếp điểm), cát tuyến MBC ( B nằm giữa M và C) và O nằm trong góc AMC. Vẽ OK vuông góc BC tại K . a) CM : tứ giác MAOK nội tiếp đường tròn. Xác định tâm và bán kính đường tròn này.
b) vẽ dây cung AI // BC . CM góc IAK + góc AMO = 90 độ.
c) IK cắt (o) tại điểm thứ hai là D. CM MD là tiếp tuyến (o).
Helppp meeeeeee
a.
Do MA là tiếp tuyến \(\Rightarrow AM\perp OA\Rightarrow\Delta OAM\) vuông tại A
\(\Rightarrow O,A,M\) cùng thuộc đường tròn đường kính OM
Do \(OK\perp BC\Rightarrow\Delta OKM\) vuông tại K
\(\Rightarrow O,K,M\) cùng thuộc đường tròn đường kính OM
\(\Rightarrow M,A,O,K\) cùng thuộc đường tròn đường kính OM
Hay tứ giác MAOK nội tiếp đường tròn đường kính OM, với tâm là trung điểm J của OM và bán kính \(R=\dfrac{OM}{2}\)
b.
Do \(AI||BC\Rightarrow\widehat{IAK}=\widehat{AKM}\) (so le trong)
Lại có MAOK nội tiếp \(\Rightarrow\widehat{AKM}=\widehat{AOM}\) (cùng chắn cung AM)
\(\Rightarrow\widehat{IAK}=\widehat{AOM}\) (1)
Mà \(\widehat{AOM}+\widehat{AMO}=90^0\) (\(\Delta OAM\) vuông tại A theo c/m câu a)
\(\Rightarrow\widehat{IAK}+\widehat{AMO}=90^0\)
c.
Gọi E là trung điểm AI \(\Rightarrow OE\perp IA\)
Mà \(IA||BC\Rightarrow OE\perp BC\Rightarrow O,E,K\) thẳng hàng
\(\Rightarrow KE\) đồng thời là đường cao và trung tuyến trong tam giác KAI
\(\Rightarrow\Delta KAI\) cân tại K \(\Rightarrow\widehat{AIK}=\widehat{IAK}\) \(\Rightarrow\widehat{AIK}=\widehat{AOM}\) (theo (1))
Mặt khác \(\widehat{AIK}\) và \(\widehat{AOD}\) là góc nội tiếp và góc ở tâm cùng chắn cung AD của (O)
\(\Rightarrow\widehat{AIK}=\dfrac{1}{2}\widehat{AOD}\Rightarrow\widehat{AOM}=\dfrac{1}{2}\left(\widehat{AOM}+\widehat{MOD}\right)\)
\(\Rightarrow\widehat{AOM}=\widehat{MOD}\)
Xét hai tam giác AOM và DOM có:
\(\left\{{}\begin{matrix}OM\text{ chung}\\\widehat{AOM}=\widehat{MOD}\left(cmt\right)\\AO=DO=R\end{matrix}\right.\) \(\Rightarrow\Delta AOM=\Delta DOM\left(c.g.c\right)\)
\(\Rightarrow\widehat{ODM}=\widehat{OAM}=90^0\)
\(\Rightarrow MD\) là tiếp tuyến của (O)
Từ điểm M nằm ngoài đường tròn (O;R), vẽ tiếp tuyến MA và cát tuyến MBC ( B nằm giữa M và C )
a) CM: MA.MA=MB.MC
b) Gọi BD, CE lần lượt là hai đường cao của tam giác ABC. CM: ED song song MA
c) Tia DE cắt MC tại F.FA cắt đường tròn (O) tại G. CM: GEA=GFB
lớp 9 chưa hok
Từ điểm M nằm ngoài đường tròn (O;R), vẽ tiếp tuyến MA và cát tuyến MBC ( B nằm giữa M và C )
a) CM: MA.MA=MB.MC
b) Gọi BD, CE lần lượt là hai đường cao của tam giác ABC. CM: ED song song MA
c) Tia DE cắt MC tại F.FA cắt đường tròn (O) tại G. CM: GEA=GFB
Cách hack điểm hỏi đáp trên OLM: https://www.youtube.com/watch?v=sMvl8_N_N54
Từ điểm M nằm ngoài đường tròn O . Vẽ tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) và cát tuyến MCD không đi qua O ( C nằm giẵ M và D ) với đường tròn O
a) C/m tứ giác MAOB nội tiếp
b)C/m MA2 =MC.MD
c) Đường thẳng MO cắt AB tại H và cắt O tại I và K ( I nằm giữa M và K ) . C/m CK là phân giác của DCH
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồg dạngvơi ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
Cần hỗ trợ
Cho điểm M nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến MA ( A là tiếp điểm), cát tuyến MBC ( B nằm giữa M và C) và O nằm trong góc AMC. Vẽ OK vuông góc BC tại K . a) CM : tứ giác MAOK nội tiếp đường tròn. Xác định tâm và bán kính đường tròn này.
b) vẽ dây cung AI // BC . CM góc IAK + góc AMO = 90 độ.
c) IK cắt (o) tại điểm thứ hai là D. CM MD là tiếp tuyến (o).
Từ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA tới đường tròn (O; R), ( A là tiếp điểm). Gọi E là trung điểm đoạn AM và hai điểm I, H lần lượt là hình chiếu của E và A trên đường thẳng OM. Qua M vẽ cát tuyến MBC tới đường tròn (O) sao cho MB < MC và tia MC nằm giữa hai tia MA, MO.
a) Chứng minh . góc AHB = góc AHC
b) Vẽ tiếp tuyến IK tới đường tròn (O) với K là tiếp điểm. Chứng minh . ∆MKH vuông tại K.
Cho đường tròn tâm (O), từ điểm M nằm ngoài đường tròn kẻ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC với đường tròn, biết MA=6cm, MC=12cm.Tính MB.
Xét đường tròn tâm O ta có :
góc MAB = góc MCA = 1/2 sđ cung AB
Xét tam giác MAB và tam giác MCA có :
góc MAB = góc MCA
góc AMC Chung
=> \(\Delta MAB\sim\Delta MCA\)
=.> \(\dfrac{MA}{MC}=\dfrac{MB}{MA}\)
=> MA2=MC.MB
<=> 62=12.MB
=>MB =3cm
vậy MB = 3 cm
Từ điểm M ở ngoài đường tròn (O), vẽ tiếp tuyến MA đến (O) (với A là tiếp điểm) và vẽ cát tuyến MBC sao cho MB < MC và tia MC nằm giữa 2 tia MA và MO. Gọi H là hình chiếu vuông góc của điểm A trên đường thẳng OM, gọi E là trung điểm của đoạn thẳng BC.
a) Chứng minh O, E, A, M cùng thuộc 1 đường tròn.
b) Chứng minh MA2 = MB . MC
c) Chứng minh tứ giác BCOH nội tiếp và HA là tia phân giác của BHC.
a: Xét tứ giác OEAM có \(\widehat{OEM}=\widehat{OAM}=90^0\)
nên OEAM là tứ giác nội tiếp
b: Xét ΔMAB và ΔMCA có
\(\widehat{MAB}=\widehat{MCA}\)
\(\widehat{AMB}\) chung
Do đó: ΔMAB\(\sim\)ΔMCA
Suy ra: MA/MC=MB/MA
hay \(MA^2=MB\cdot MC\)