Cho đường tròn tâm o và 1 điểm m nằm ngoài đường tòn .Vẽ 2 tiếp tuến ma ,mb và các tuyến mde với đường tròn tâm o ( a,b,d,e cùng thuộc đường tròn) .mo cắt ab tại h
chứng minh
a, md.me=ma bình
b,md.me=mh .mo
mình cảm ơn
Cho tam giác ABC nội tiếp (O) . Tia phân giác góc A cắt đường tròn tại M, tia phân giác góc ngoài tại đỉnh A cắt đường tròn tại N . CM:
a) tam giác MBC cân
b) CM: O, M, N thẳng hàng
Cho điểm M nằm cố định bên ngoài (O) , vẽ tiếp tuyến MT ( T là tiếp điểm ) , vẽ cát tuyết MAB, điểm C là giao điểm của bán kính TO và dây AB . Chứng minh MC : MT2 = MA . MB
Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm nằm trên cung nhỏ BC. Chứng minh rằng MA = MB + MC.
Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC. Trên MA lấy điểm D sao cho MD = MB.
a) Hỏi tam giác MBD là tam giác gì ?
b) So sánh tam giác BDA và BMC
c) Chứng minh rằng MA = MB + MC
Trên đường tròn (O) đường kính AB, lấy điểm M (khác A và B). Vẽ tiếp tuyến của (O) tại A. Đường thẳng BM cắt tiếp tuyến đó tại C. Chứng mính rằng ta luôn có: MA2 = MB.MC.
Bài 2: Cho tam giác ABC nhọn AB<AC, vẽ (O) đường kính BC, đường tròn này cắt AB, AC lần lượt tại M và N, BN và CM cắt nhau tại H, AH cắt BC tại K
a) Chứng minh: AK vuông góc với BC
b) Chứng minh các tứ giác BMHK, AMKC, AMHN và ABKN nội tiếp
c) Chứng minh H là tâm đường tròn nội tiếp tam giác MNK
d) Chứng minh tứ giác MNOK nội tiếp
Bài 3: Cho điểm M nằm ngoài (O), vẽ hai tiếp tuyến MA, MB và cát tuyến MCD với (O), O nằm ngoài góc DMA, Gọi I là trung điểm của dây CD.
a) Chứng minh năm điểm M,A,I, O, B cùng thuộc một đường tròn
b) Chứng minh MA.MB = MC. MD
c) Gọi H là giao điểm của OM với (O). Chứng minh tứ giác CHOD nội tiếp
d) Gọi K là giao điểm của AB và OI. Chứng minh KC và KD là hai tiếp tuyến của (O).
Cho đường tròn O và hai đường kính AB CD vuông góc với nhau lấy một điểm M trên cung nhỏ BC g vẽ tiếp tuyến với đường tròn O tại M tiếp tuyến này cắt CD tại S lấy điểm F thuộc cung nhỏ BC cắt AB ở E Chứng minh:
a, BD2 = DE.DF
b, góc MSD = góc MBA