Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quỳnh
Xem chi tiết
Trịnh Linh
Xem chi tiết
Đoàn Đức Hà
22 tháng 6 2021 lúc 16:16

a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)

b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)

\(=\frac{1+tanx}{1+tanx}=1\)

c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)

Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)

\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)

\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)

d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)

Khách vãng lai đã xóa
nguyễn trung
Xem chi tiết
vanila
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 23:53

\(E=\dfrac{\left(cosx-siny\right)\left(cosx+siny\right)}{sin^2x\cdot sin^2y}-\dfrac{cos^2x}{sin^2x}\cdot\dfrac{cos^2y}{sin^2y}\)

\(=\dfrac{cos^2x\left(1-cos^2y\right)-sin^2y}{sin^2x\cdot sin^2y}\)

\(=\dfrac{sin^2y\left(cos^2x-1\right)}{sin^2x\cdot sin^2y}=-1\)

Nguyễn Thị Hà
Xem chi tiết
Hiếu Thông Minh
18 tháng 7 2018 lúc 15:56

\(\sin^2x.sin^2y+sin^2x.cos^2y+cos^2x\)

\(\sin^2x.\left(\sin^2y+cos^2y\right)+cos^2x\)

=sin2x.1+cos2x

=sin2x+cos2x

=1

A Lan
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 16:38

\(1-cos^2x+1-cos^2y=\frac{1}{4}\Rightarrow cos^2x+cos^2y=\frac{7}{4}\)

\(\Rightarrow\frac{3}{4}\le cos^2x;cos^2y\le1\)

\(S=1+tan^2x+1+tan^2y-2=\frac{1}{cos^2x}+\frac{1}{cos^2y}-2\)

\(=\frac{7}{4cos^2x.cos^2y}-2=\frac{7}{4cos^2x\left(\frac{7}{4}-cos^2x\right)}-2=\frac{7}{-4cos^4x+7cos^2x}-2\)

Đặt \(cos^2x=t\) \(\Rightarrow\frac{3}{4}\le t\le1\)

Xét \(f\left(t\right)=-4t^2+7t\) trên \(\left[\frac{3}{4};1\right]\)

\(-\frac{b}{2a}=\frac{7}{8}\Rightarrow f\left(\frac{7}{8}\right)=\frac{49}{16}\) ; \(f\left(\frac{3}{4}\right)=3\); \(f\left(1\right)=3\)

\(\Rightarrow3\le f\left(t\right)\le\frac{49}{16}\)

\(\Rightarrow\frac{7}{\frac{49}{16}}-2\le S\le\frac{7}{3}-2\Leftrightarrow\frac{2}{7}\le S\le\frac{1}{3}\)

Không có trong đáp án?

Khách vãng lai đã xóa
Nguyễn Bảo Nam
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 10 2019 lúc 22:30

\(A=\frac{cos^2x-sin^2y}{sin^2x.sin^2y}-\frac{cos^2x.cos^2y}{sin^2x.sin^2y}=\frac{cos^2x-sin^2y-cos^2x.cos^2y}{sin^2x.sin^2y}=\frac{cos^2x\left(1-cos^2y\right)-sin^2y}{sin^2x.sin^2y}\)

\(=\frac{cos^2x.sin^2y-sin^2y}{sin^2x.sin^2y}=\frac{-sin^2y\left(1-cos^2x\right)}{sin^2x.sin^2y}=\frac{-sin^2x.sin^2y}{sin^2x.sin^2y}=-1\)

Minh Triều
Xem chi tiết
alibaba nguyễn
9 tháng 4 2017 lúc 7:03

\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)

 Xong

ngonhuminh
9 tháng 4 2017 lúc 21:00

Tạm thời chưa  hiểu gì cả

hãy đợi đó

Ichigo Hollow
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 4 2019 lúc 21:39

Giả sử tất cả các biểu thức đều xác định

a/

\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)

\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)

b/

\(tanx+cotx=\frac{sinx}{cosx}+\frac{cosx}{sinx}=\frac{sin^2x+cos^2x}{sinx.cosx}=\frac{1}{sinx.cosx}\)

c/

\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)

d/

\(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{1}{1+\frac{1}{tanx}}=\frac{1}{1+tanx}+\frac{tanx}{1+tanx}=\frac{1+tanx}{1+tanx}=1\)

e/

\(\left(1-\frac{1}{cosx}\right)\left(1+\frac{1}{cosx}\right)+tan^2x=1-\frac{1}{cos^2x}+tan^2x\)

\(=\frac{cos^2x-1}{cos^2x}+tan^2x=\frac{-sin^2x}{cos^2x}+tan^2x=-tan^2x+tan^2x=0\)