Cho \(\Delta\)ABC có AB=BC=AC. Tính số đo các góc của \(\Delta\)ABC.
Cho \(\Delta ABC\)vuông tại A. AB<AC thỏa mãn BC2=4AB.AC. Tính số đo các góc nhọn của \(\Delta ABC\)
Theo định lý Pi-ta-go, ta có \(BC^2=AB^2+AC^2\)
Vậy nên theo bài ra ta có \(AB^2+AC^2=4AB.AC\)
\(\Rightarrow AB^2-4AB.AC+AC^2=0\)
\(\Rightarrow\left(\frac{AB}{AC}\right)^2-4.\frac{AB}{AC}+1=0\)
Đặt \(\frac{AB}{AC}=k\Rightarrow k^2-4k+1=0\Rightarrow\orbr{\begin{cases}k=2+\sqrt{3}\\k=2-\sqrt{3}\end{cases}}\)
Do AB < AC nên \(\frac{AB}{AC}< 1\), vậy ta lấy \(k=2-\sqrt{3}\)
Với \(k=2-\sqrt{3}\Rightarrow tan\widehat{ACB}=2-\sqrt{3}\Rightarrow\widehat{ACB}=15^o\Rightarrow\widehat{ABC}=75^o\)
Cô Huyền giúp em rõ hơn được không, em lớp 8 chưa học \("\tan"\)
Cho \(\Delta ABC\) vuông tạ A có AB = 6 cm và BC = 12 cm
a. Tính độ dài cạnh AC và số đo các góc B, C
b. tia phân giác của góc B cắt cạnh AC tại D, giải tam giác vuông ABD
c. Từ D kẻ DE vuông góc BC (E thuộc BC). Không dùng số đo, chứng minh rằng \(\dfrac{S_{EDC}}{S_{ABC}}=tan^2\dfrac{B}{2}\)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=12^2-6^2=108\)
hay \(AC=6\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{B}=60^0\)
Cho \(\Delta ABC\) đều, 1 đường thẳng \(//AC\) cắt \(AB,BC\) ở \(M,P\) . Gọi \(D\) là tâm của \(\Delta PMB\) ; \(E\) là trung điểm của \(AB\) . Tính các góc của \(\Delta CDE\) .
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị * hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
cho \(\Delta ABC\)cân tạiC, trên BC lấy M. Trên tia đối AC lấy N sao cho AN=BM. từ M và N kẻ MH và NI vuông góc với AB
tính số đo các góc còn lại của \(\Delta ABC\) biết góc B bằng 42độCM: \(\Delta INA=\Delta HMB\)Gọi O là giao điểm của MN và AB.CM: OM=ON1, vì tam giác ABC cân tại C => Â = \(\widehat{B}\)
Mà theo đề ta có góc B = 42 độ
=> góc A = B = 42 độ
Trong tam giác ABC có : góc A + góc B + góc C = 180 ( theo định lý tổng 3 góc trong tam giác )
42 + 42 + góc C = 180 độ
84 + góc C = 180 độ
=> góc C = 96 độ
Trong tam giác ABC cân tại C có góc A = 42 độ, B = 42 độ và góc C = 96 độ
Cho tam giác ABC có \(\widehat{A}=110^0\), M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA
a) Tính số đo của góc ACK
b) Vẽ về phía ngoài của tam giác ABC các đoạn thẳng AD, AE sao cho AD vuông góc với AB và AD = AB, AE vuông góc với AC và AE = AC. Chứng minh rằng \(\Delta CAK=\Delta AED\)
c) Chứng minh rằng MA vuông góc với DE
Lời giải:
a) Chứng minh CK // AB để suy ra
∠ACK = 180° - ∠BAC = 180° - 110° = 70°.
b) ΔCAK = ΔAED (c.g.c)
c) Gọi H là giao điểm của MA và DE.
ΔCAK = ΔAED nên ∠A1 = ∠E.
Ta lại có ∠A1 + ∠A2 = 90° nên ∠A2 + ∠E = 90°.
Do đó MA ⊥ DE.
Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC tại D
a) Chứng minh \(\Delta ADB=\Delta ADC\)
b) Kẻ DH vuông góc với AB ( H\(\in\)AB), DK vuông góc với AC( K \(\in\)AC) Chứng minh DH = DK
c) Biết \(\widehat{A}\)= 400 . Tính số đo các góc trong tam giác ABC
Hướng dẫn bạn làm nhé, bài này cũng đơn giản thôi :P
a/ \(\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ \(\Delta AHD=\Delta AKD\left(canhhuyen...gocnhon\right)\)
\(\Rightarrow HD=KD\)
c/ tự làm
Cho \(\Delta ABC\)có \(\widehat{A}=20^o\), AB = AC. Lấy điểm M thuộc AB sao cho MA = BC. Tính số đo góc AMC
bạn tự vẽ hình nhé
Tam giác ABC có \(AB=AC\Rightarrow\Delta ABC\)Cân \(\Rightarrow ABC=ACB=\frac{180-20}{2}=80\)
Lại có \(\Delta MBC\)Có
Tam giác \(ABC\) có \(AB = 6cm,AC = 8cm,BC = 10cm\). Đường phân giác của góc \(BAC\) cắt cạnh \(BC\) tại \(D\).
a) Tính độ dài các đoạn thẳng \(DB\) và \(DC\).
b) Tính tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\).
a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 10 - BD\)
Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:
\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{10 - BD}} = \frac{6}{8} \Leftrightarrow 8BD = 6.\left( {10 - BD} \right) \Rightarrow 8BD = 60 - 6BD\)
\( \Leftrightarrow 8BD + 6BD = 60 \Leftrightarrow 14BD = 60 \Rightarrow BD = \frac{{60}}{{14}} = \frac{{30}}{7}\)
\( \Rightarrow DC = 10 - \frac{{30}}{7} = \frac{{40}}{7}\)
Vậy \(BD = \frac{{30}}{7}cm;DC = \frac{{40}}{7}cm\).
b) Kẻ \(AE \bot BC \Rightarrow AE\) là đường cao của tam giác \(ABC\).
Vì \(AE \bot BC \Rightarrow AE \bot BD \Rightarrow AE\)là đường cao của tam giác \(ADB\)
Diện tích tam giác \(ADB\) là:
\({S_{ADB}} = \frac{1}{2}BD.AE\)
Vì \(AE \bot BC \Rightarrow AE \bot DC \Rightarrow AE\)là đường cao của tam giác \(ADC\)
Diện tích tam giác \(ADC\) là:
\({S_{ADC}} = \frac{1}{2}DC.AE\)
Ta có: \(\frac{{{S_{ADB}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}AE.BD}}{{\frac{1}{2}AE.CD}} = \frac{{BD}}{{DC}} = \frac{{\frac{{30}}{7}}}{{\frac{{40}}{7}}} = \frac{3}{4}\).
Vậy tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\) là \(\frac{3}{4}\).
Cho \(\Delta\)ABC vẽ AH⊥BC(AH∈BC) có\(\widehat{B}\)=45o AB=\(\sqrt{8}\), AC=\(\sqrt{13}\). Tính số đo cạnh AHvà DC
Ta có: \(\Delta ABH\) vuông tại \(H\), \(\widehat{B}=45^0\)
\(\Rightarrow\).\(\Delta ABH\) vuông cân tại \(H\) \(\Rightarrow AH=BH=\dfrac{AB}{\sqrt{2}}=\dfrac{\sqrt{8}}{\sqrt{2}}=2\).
Lại có: \(AH^2+HC^2=AC^2\\ \Rightarrow CH=\sqrt{AC^2-AH^2}=\sqrt{13-4}=3\)
\(\Rightarrow BC=BH+HC=2+3=5\).
Xét ΔABH vuông tại H có \(\widehat{B}=45^0\)(gt)
nên ΔABH vuông cân tại H(Dấu hiệu nhận biết tam giác vuông cân)
\(\Leftrightarrow AH=BH\)(hai cạnh bên)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow2\cdot AH^2=\left(\sqrt{8}\right)^2=8\)
\(\Leftrightarrow AH^2=4\)
hay AH=2(cm)
Vậy: AH=2cm
cho \(\Delta\)ABC = \(\Delta\) MNP với M = 40 độ ; 3B = 4C. tính số đo các góc của Δ ABC
Do: \(\Delta ABC=\Delta MNP\left(gt\right)\)
\(\Rightarrow\widehat{A}=\widehat{M}=40^o\) (hai góc tương ứng)
Mà: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^o-40^o=140^o\)
\(\Rightarrow3\widehat{B}+3\widehat{C}=3\cdot140^o\)
Lại có: \(3\widehat{B}=4\widehat{C}\)
\(\Rightarrow4\widehat{C}+3\widehat{C}=420^o\)
\(\Rightarrow7\widehat{C}=420^o\Rightarrow\widehat{C}=60^o\)
\(\Rightarrow\widehat{\text{B}}=140^o-60^o=80^o\)
Do ∆ABC = ∆MNP (gt)
⇒ ∠A = ∠M = 40⁰
Ta có:
∠A + ∠B + ∠C = 180⁰ (tổng ba góc trong ∆ABC)
⇒ ∠B + ∠C = 180⁰ - ∠A
= 180⁰ - 40⁰
= 140⁰
⇒ 3(∠B + ∠C) = 3.140⁰
⇒ 3∠B + 3∠C = 420⁰
Mà 3∠B = 4∠C
⇒ 4∠C + 3∠C = 420⁰
⇒ 7∠C = 420⁰
⇒ ∠C = 420⁰ : 7
⇒ ∠C = 60⁰
⇒ ∠B = 140⁰ - ∠C
= 140⁰ - 60⁰
= 80⁰
Vậy số đo các góc của ∆ABC là:
∠A = 40⁰; ∠B = 80⁰; ∠C = 60⁰