tìm \(\alpha\) để pt có nghiệm
\(\frac{5+4sin\left(\frac{3\pi}{2}-x\right)}{sinx}=3sin2\alpha\)
1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là?
2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là?
3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\)
4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là?
5. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}sin2x-2cos^2x=4\) là?
6. Pt: \(cos2x+sinx=\sqrt{3}\left(cosx-sin2x\right)\) có bn nghiệm \(x\varepsilon\left(0;2020\right)\)?
7. Pt: \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=2\) có nghiệm dương nhỏ nhất là a và nghiệm âm lớn nhất là b thì a + b là?
8. Pt: \(3sin3x+\sqrt{3}cos9x=2cosx+4sin^33x\) có số nghiệm trên \(\left(0;\frac{\pi}{2}\right)\) là?
9. Tìm m để pt: \(sin2x+cos^2x=\frac{m}{2}\) có nghiệm là?
10. Cho pt: \(\left(m^2+2\right)cos^2x-2msin2x+1=0\). Để pt có nghiệm thì giá trị thích hợp của tham số m là?
11. Tìm tập giá trị lớn nhất, nhỏ nhất của hs sau: \(y=\frac{sin^22x+3sin4x}{2cos^22x-sin4x+2}\)
1.
\(\Leftrightarrow4\left(\frac{1-cos2x}{2}\right)+3\sqrt{3}sin2x-2\left(\frac{1+cos2x}{2}\right)=4\)
\(\Leftrightarrow\sqrt{3}sin2x-cos2x=1\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=\frac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{6}=\frac{5\pi}{6}+l2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{2}+l\pi\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm dương nhỏ nhất \(x=\frac{\pi}{6}\)
2.
\(\Leftrightarrow6\left(\frac{1-cos2x}{2}\right)+7\sqrt{3}sin2x-8\left(\frac{1+cos2x}{2}\right)=6\)
\(\Leftrightarrow\sqrt{3}sin2x-cos2x=1\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=\frac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
3.
\(sinx+\sqrt{3}cosx=1\)
\(\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\alpha=-\frac{\pi}{6}\\\beta=\frac{\pi}{2}\end{matrix}\right.\) \(\Rightarrow\alpha\beta=-\frac{\pi^2}{12}\)
Tính \(\sin \left( {\alpha + \frac{\pi }{6}} \right),\cos \left( {\frac{\pi }{4} - \alpha } \right)\) biết \(\sin \alpha = - \frac{5}{{13}},\pi < \alpha < \frac{{3\pi }}{2}\)
\(\cos \alpha = - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}} = - \frac{{12}}{{13}}\) (vì \(\pi < \alpha < \frac{{3\pi }}{2}\))
\(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)
\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha + \sin \frac{\pi }{4}sin\alpha = \frac{{ - 17\sqrt 2 }}{{26}}\)
Trong các hệ thức sau , hệ thức nào sai ?Nếu sai hãy sửa lại cho đúng và chứng minh các hệ thức đúng còn lại ?
\(A.\frac{sin^2\alpha+1}{2\left(1-sin^2\alpha\right)}+\frac{1+cos^2\alpha}{2\left(1-cos^2\alpha\right)}+1=\left(tan\alpha+cot\alpha\right)^2\)
\(B.\frac{1-4sin^2x.cos^2x}{4sin^2x.cos^2x}=\frac{1+tan^4x-2tan^2x}{4tan^2x}\)
\(C.\frac{sinx+tanx}{tanx}=1+sinx+cotx\)
\(D.tanx+\frac{cosx}{1+sinx}=\frac{1}{cosx}\)
\(\frac{sin^2a+1}{2.cos^2a}+\frac{1+cos^2a}{2.sin^2a}+1=\frac{tan^2a}{2}+\frac{1}{2cos^2a}+\frac{cot^2a}{2}+\frac{1}{2sin^2a}+1\)
\(=\frac{1}{2}\left(tan^2a+1+tan^2a+cot^2a+1+cot^2a+2\right)\)
\(=\frac{1}{2}\left(2tan^2a+4+2cot^2a\right)=tan^2a+2+cot^2a=\left(tana+cota\right)^2\)
B.
\(\frac{1-4sin^2a.cos^2a}{4sin^2a.cos^2a}=\frac{\frac{1}{cos^4a}-\frac{4sin^2a}{cos^2a}}{\frac{4sin^2a}{cos^2a}}=\frac{\left(\frac{1}{cos^2a}\right)^2-4tan^2a}{4tan^2a}=\frac{\left(1+tan^2a\right)^2-4tan^2a}{4tan^2a}\)
\(=\frac{tan^4a-2tan^2a+1}{4tan^2a}\)
C.
\(\frac{sina+tana}{tana}=\frac{sina}{tana}+1=1+sina.\frac{cosa}{sina}=1+cosa\)
D.
\(tana+\frac{cosa}{1+sina}=\frac{sina}{cosa}+\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{sina.cosa}{cos^2a}+\frac{cosa-cosa.sina}{cos^2a}\)
\(=\frac{sina.cosa+cosa-sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)
Câu C sai
Biết \(sin\alpha=\frac{3}{5}\) và \(\frac{\pi}{2}< \alpha< \pi\). Tính \(P=1-2sin^2\left(\frac{\pi}{4}-\alpha\right)+sin2\alpha+cos\left(\pi-2\alpha\right)-6tan\left(\frac{\pi}{2}-\alpha\right)\)
\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)
\(P=1-\left[1-cos\left(\frac{\pi}{2}-2a\right)\right]+sin2a-cos2a-6cota\)
\(=sin2a+sin2a-cos2a-6cota\)
\(=2sin2a-cos2a-6cota\)
\(=4sina.cosa-\left(cos^2a-sin^2a\right)-\frac{6cosa}{sina}\) (thay số và bấm máy)
giải các pt
a) \(cos^2\left(\frac{\pi}{3}+x\right)+4cos\left(\frac{\pi}{6}-x\right)=4\)
b) \(5cos\left(2x+\frac{\pi}{3}\right)=4sin\left(\frac{5\pi}{6}-x\right)-9\)
c) \(2sin^2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)
d) \(2sin^2x+\sqrt{3}sin2x+4=4\left(\sqrt{3}sinx+cosx\right)\)
a/
Đặt \(x+\frac{\pi}{3}=a\Rightarrow x=a-\frac{\pi}{3}\)
Pt trở thành:
\(cos^2a+4cos\left(\frac{\pi}{6}-a+\frac{\pi}{3}\right)=4\)
\(\Leftrightarrow cos^2a+4cos\left(\frac{\pi}{2}-a\right)-4=0\)
\(\Leftrightarrow cos^2a+4sina-4=0\)
\(\Leftrightarrow1-sin^2a+4sina-4=0\)
\(\Leftrightarrow-sin^2a+4sina-3=0\)
\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sin\left(x+\frac{\pi}{3}\right)=1\)
\(\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\frac{\pi}{6}+k2\pi\)
b/
Đặt \(x+\frac{\pi}{6}=a\Rightarrow x=a-\frac{\pi}{6}\)
Pt trở thành:
\(5cos2a=4sin\left(\frac{5\pi}{6}-a+\frac{\pi}{6}\right)-9\)
\(\Leftrightarrow5cos2x=4sin\left(\pi-a\right)-9\)
\(\Leftrightarrow5\left(1-2sin^2a\right)=4sina-9\)
\(\Leftrightarrow10sin^2a+4sina-14=0\)
\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=-\frac{7}{5}< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=1\)
\(\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)
c/
\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
Cho \(\alpha\in\left(\frac{\Pi}{2};\Pi\right)\) và \(sin\alpha=\frac{3}{5}\). Tính \(A=\frac{sin\left(\frac{7\Pi}{2}-\alpha\right)}{sin\left(\frac{\Pi}{4}+\alpha\right)-cos\alpha}\)
\(a\in\left(\frac{\pi}{2};\pi\right)\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)
\(A=\frac{sin\left(4\pi-\frac{\pi}{2}-a\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-sin\left(a+\frac{\pi}{2}\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-cosa}{sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}-cosa}\)
\(=\frac{-\frac{4}{5}}{\frac{3}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}}=...\)
giai pt:
a) \(4sin^5x.cosx-4cos^5x.sinx=sin^24x\)
b) \(4sin^2\frac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\frac{3\pi}{4}\right)\)
c) \(sin^2\left(x+\frac{\pi}{3}\right)+sinx+\sqrt{3}cosx=\frac{5}{4}\)
d) \(2sinx\left(1+cos2x\right)+sin2x=1+2cosx\)
e) \(sin^2x+4sinx.cosx+3cos^2x-sinx-3ccosx=0\)
a/
\(\Leftrightarrow4sinx.cosx\left(sin^4x-cos^4x\right)=sin^24x\)
\(\Leftrightarrow2sin2x\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^24x\)
\(\Leftrightarrow-2sin2x.cos2x=sin^24x\)
\(\Leftrightarrow-sin4x=sin^24x\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\sin4x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=k\pi\\4x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=-\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
\(\Leftrightarrow2\left(1-cosx\right)-\sqrt{3}cos2x=1+1+cos\left(2x-\frac{3\pi}{2}\right)\)
\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=sin\left(2\pi-2x\right)\)
\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=-sin2x\)
\(\Leftrightarrow sin2x-\sqrt{3}cos2x=2cosx\)
\(\Leftrightarrow\frac{1}{2}sin2x-\sqrt{3}cos2x=cosx\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=cosx=sin\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{2}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{5}{4}=0\)
\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{3}\right)-\frac{5}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\\sin\left(x+\frac{\pi}{3}\right)=-\frac{5}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
Cho cos \(\alpha\)=\(-\frac{4}{5}\) và \(-\pi< \alpha< \frac{-3}{2}\pi\). Tính \(\sin2\alpha;\)\(\cos2a;\sin\left(\frac{5\pi}{2}-\alpha\right);\tan\left(\alpha+\frac{\pi}{4}\right);\cos\frac{\alpha}{2}\)
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
Cho \(\sin \alpha = \frac{{12}}{{13}}\) và \(\cos \alpha = - \frac{5}{{13}}\). Tính \(\sin \left( { - \frac{{15\pi }}{2} - \alpha } \right) - \cos \left( {13\pi + \alpha } \right)\)
Ta có:
\(\begin{array}{l}\sin \left( { - \frac{{15\pi }}{2} - \alpha } \right) - \cos \left( {13\pi + \alpha } \right) = \sin \left( { -\frac{{16\pi }}{2} +\frac{{\pi }}{2} + \alpha } \right) - \cos \left( {12\pi + \pi + \alpha } \right) = \sin \left( {-8\pi + \frac{\pi }{2} - \alpha } \right) - \cos \left( { \pi + \alpha } \right) \\ = \sin \left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( \alpha \right) = \cos \left( \alpha \right) + \cos \left( \alpha \right) = 2\cos \left( \alpha \right) = 2.\left( { - \frac{5}{{13}}} \right) = \frac{{ - 10}}{{13}}\end{array}\)