Chương 6: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trùm Trường

Trong các hệ thức sau , hệ thức nào sai ?Nếu sai hãy sửa lại cho đúng và chứng minh các hệ thức đúng còn lại ?

\(A.\frac{sin^2\alpha+1}{2\left(1-sin^2\alpha\right)}+\frac{1+cos^2\alpha}{2\left(1-cos^2\alpha\right)}+1=\left(tan\alpha+cot\alpha\right)^2\)

\(B.\frac{1-4sin^2x.cos^2x}{4sin^2x.cos^2x}=\frac{1+tan^4x-2tan^2x}{4tan^2x}\)

\(C.\frac{sinx+tanx}{tanx}=1+sinx+cotx\)

\(D.tanx+\frac{cosx}{1+sinx}=\frac{1}{cosx}\)

Nguyễn Việt Lâm
11 tháng 4 2019 lúc 22:42

\(\frac{sin^2a+1}{2.cos^2a}+\frac{1+cos^2a}{2.sin^2a}+1=\frac{tan^2a}{2}+\frac{1}{2cos^2a}+\frac{cot^2a}{2}+\frac{1}{2sin^2a}+1\)

\(=\frac{1}{2}\left(tan^2a+1+tan^2a+cot^2a+1+cot^2a+2\right)\)

\(=\frac{1}{2}\left(2tan^2a+4+2cot^2a\right)=tan^2a+2+cot^2a=\left(tana+cota\right)^2\)

B.

\(\frac{1-4sin^2a.cos^2a}{4sin^2a.cos^2a}=\frac{\frac{1}{cos^4a}-\frac{4sin^2a}{cos^2a}}{\frac{4sin^2a}{cos^2a}}=\frac{\left(\frac{1}{cos^2a}\right)^2-4tan^2a}{4tan^2a}=\frac{\left(1+tan^2a\right)^2-4tan^2a}{4tan^2a}\)

\(=\frac{tan^4a-2tan^2a+1}{4tan^2a}\)

C.

\(\frac{sina+tana}{tana}=\frac{sina}{tana}+1=1+sina.\frac{cosa}{sina}=1+cosa\)

D.

\(tana+\frac{cosa}{1+sina}=\frac{sina}{cosa}+\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{sina.cosa}{cos^2a}+\frac{cosa-cosa.sina}{cos^2a}\)

\(=\frac{sina.cosa+cosa-sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)

Câu C sai


Các câu hỏi tương tự
Nguyễn Thảo Hân
Xem chi tiết
Nguyễn Xuân Dương
Xem chi tiết
Nguyễn Hà Chi
Xem chi tiết
Ngoc Nhi Tran
Xem chi tiết
Trùm Trường
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết
Trùm Trường
Xem chi tiết
Won Kim Eun (Sarah)
Xem chi tiết
Won Kim Eun (Sarah)
Xem chi tiết