Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
12 tháng 5 2017 lúc 11:16

Dựng hình hình hành CADB.
A B C D
Theo quy tắc hình bình hành: \(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vì vậy \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD\);
Mặt khác \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{CA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BA}\right|=BA\).
Suy ra: \(CD=AB\).
Hình bình hành CADB có hai đường chéo bằng nhau (\(CD=AB\) )nên hình bình hành CADB là hình chữ nhật.

Trần Phương Thảo
Xem chi tiết
Mysterious Person
6 tháng 8 2018 lúc 9:40

ta có : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|2\overrightarrow{CH}\right|=2CH\) với \(H\) là chân đường cao kẻ từ \(C\)

ta có : \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{BA}\right|=AB\)

mà ta có : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\) \(\Rightarrow AB=2CH\)

\(\Rightarrow\Delta ABC\) là tam giác vuông tại \(C\) (tính chất đường trung tuyến)

vậy ..........................................................................................

Viên Lưu
Xem chi tiết
not good at math
27 tháng 2 2016 lúc 16:20

Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)

\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:

a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)

\(=\cos150^o+\sin30^o+\tan60^o\)

\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)

\(=\frac{\sqrt{3}+1}{2}\)

b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)

\(=\sin90^o+\cos30^o+\cos0^o\)

\(=1+\frac{\sqrt{3}}{2}\)

\(=\frac{2+\sqrt{3}}{2}\)

quangduy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2018 lúc 21:49

Theo tính chất trọng tâm tam giác ta luôn có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\overrightarrow{GA}=-\overrightarrow{GB}-\overrightarrow{GC}\)

Thế vào đẳng thức giả thiết ta được:

\(BC.\left(-\overrightarrow{GB}-\overrightarrow{GC}\right)+AC.\overrightarrow{GB}+AB.\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow\left(AC-BC\right)\overrightarrow{GB}=\left(BC-AB\right)\overrightarrow{GC}\) (1)

\(\overrightarrow{GB};\overrightarrow{GC}\) không phải 2 vecto cùng phương

\(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}AC-BC=0\\BC-AB=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AC=BC\\AB=BC\end{matrix}\right.\)

\(\Rightarrow AB=AC=BC\) \(\Rightarrow\Delta ABC\) là tam giác đều

dung doan
Xem chi tiết
Pham Tien Dat
23 tháng 3 2021 lúc 22:24

a. \(=\widehat{ABC}=60^o\)

b. \(=120^o\)

c. \(=30^o\)

Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 23:32

\(VT=4\overrightarrow{MA}-4\overrightarrow{MC}+\overrightarrow{MB}-\overrightarrow{MC}\)

\(=4\overrightarrow{CA}+\overrightarrow{CB}\)

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2021 lúc 21:43

a.

\(P=cos120^0+cos120^0+cos120^0=-\dfrac{3}{2}\)

b.

\(A=\dfrac{\dfrac{sinx}{cosx}-\dfrac{cosx}{cosx}}{\dfrac{sinx}{cosx}+\dfrac{cosx}{cosx}}=\dfrac{tanx-1}{tanx+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)

c.

\(A=\dfrac{cos\left(720+30\right)+sin\left(360+60\right)}{sin\left(-360+30\right)-cos\left(-360-30\right)}=\dfrac{cos30+sin60}{sin30-cos30}=-3-\sqrt{3}\)

Phạm Vũ Tuấn Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 12:28

Gọi M là trung điểm của BC

Ta có: ΔABC đều

mà AM là đường trung tuyến

nên AM\(\perp\)BC tại M

Xét ΔAMB vuông tại M có \(sinB=\dfrac{AM}{AB}\)

=>\(\dfrac{AM}{1}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AM=\dfrac{\sqrt{3}}{2}\)

Xét ΔABC có AM là đường trung tuyến

nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AM}\)

=>\(\overrightarrow{AB}-\overrightarrow{CA}=2\cdot\overrightarrow{AM}\)

=>\(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=2\cdot AM=2\cdot\dfrac{\sqrt{3}}{2}=\sqrt{3}\)

=>A đúng, B và C đều sai

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)

\(=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|=\left|\overrightarrow{CB}\right|=CB=1\)

=>D sai

Hoàng Yến Nghiêm
Xem chi tiết
Banhbaonuong
1 tháng 10 2021 lúc 2:49

Ta có I CA+AB I = I CB I =CB

Xét tam giác ABC ( A=90 ) áp dụng định lý pytago có

CB^2 = AB^2 + AC^2 = 9+16=25 => CB=5.

Vậy I CA+AB I= I CB I =5