Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tường Nguyễn Thế
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thị Thanh Ngọc
11 tháng 10 2019 lúc 21:16

a.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)

VT:\(\overrightarrow{AB}+\overrightarrow{CD}\)

=\(\overrightarrow{AC}+\overrightarrow{CB}+\overrightarrow{CA}+\overrightarrow{AD}\)

=\(\overrightarrow{AB}+\overrightarrow{CB}=0\left(đpcm\right)\)

b.\(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{ED}+\overrightarrow{CB}\)

\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}+\overrightarrow{DE}+\overrightarrow{BC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(LĐ\right)\)

Phan Tấn Toàn
19 tháng 12 2023 lúc 15:12

Fuck

Nguyễn Phi Hòa
Xem chi tiết
Cao Viết Cường
Xem chi tiết
Ngọc Thủy
Xem chi tiết
Ngân Vũ Thị
16 tháng 7 2019 lúc 13:19

Hỏi đáp ToánBài này có nhiều cách giải mk giải hộ bạn câch này thôi nha . Bạn có thể lên web dica.vn để hỏi đáp . Trên đó các bạn í giải nhanh lắm.

Hồng Quang
16 tháng 7 2019 lúc 15:32

Làm cách ngược lại này:

C/m: \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{CF}+\overrightarrow{EB}\)

Ta có: \(\overrightarrow{AD}+\overrightarrow{CF}+\overrightarrow{EB}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{CD}+\overrightarrow{DF}+\overrightarrow{EF}+\overrightarrow{FB}\) \(=\left(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EF}\right)+\overrightarrow{BD}+\overrightarrow{DF}+\overrightarrow{FB}\)Mà: \(\overrightarrow{BD}+\overrightarrow{DF}+\overrightarrow{FB}=\overrightarrow{0}\)

\(\Rightarrow\) đpcm

Nguyễn Phi Hòa
Xem chi tiết
ngọc
8 tháng 7 2018 lúc 20:42

a, =CD+FA+AB+DE+BC+EF=(CD+DE)+(AB+BC)+FA+EF

=CE+AC+FA+EF= (CE+EF)+AC+FA=CF+AC+FA=(CF+FA)+AC=CA+AC=0

ngọc
8 tháng 7 2018 lúc 20:47

b,VP=CD+AE+BF

VT=AD+FC+BE=AC+CD+CB+BF+BA+AE=(AC+CB)+CD+BF+BA+AE

=AB+CD+BF+BA+AE=(AB+BA)+CD+BF+AE=CD+BF+AE=VP(dccm)

Lê Thành Vinh
Xem chi tiết
Ngân Vũ Thị
24 tháng 7 2019 lúc 19:05

Chương I: VÉC TƠChương I: VÉC TƠChương I: VÉC TƠ

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:56

a)

\(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AD}  + \overrightarrow {CB} \\ \Leftrightarrow \overrightarrow {AB}  - \overrightarrow {CB}  = \overrightarrow {AD}  - \overrightarrow {CD} \\ \Leftrightarrow \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AD}  + \overrightarrow {DC} \\ \Leftrightarrow \overrightarrow {AC}  = \overrightarrow {AC} \end{array}\)

(luôn đúng)

b) \(\overrightarrow {AB}  + \overrightarrow {CD}  + \overrightarrow {BC}  + \overrightarrow {DA}  = \overrightarrow 0 \)

Ta có:

\(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {CD}  + \overrightarrow {BC}  + \overrightarrow {DA}  = (\overrightarrow {AB}  + \overrightarrow {BC} ) + (\overrightarrow {CD}  + \overrightarrow {DA} )\\ = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow 0 \end{array}\)

Chú ý khi giải

+) Hiệu hai vecto chung gốc: \(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB} \) (suy ra từ tổng \(\overrightarrow {AB}  = \overrightarrow {AC}  + \overrightarrow {CB} \))

+) Với 4 điểm A, B, C, D bất kì ta có: \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \overrightarrow {AA}  = \overrightarrow 0 \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:46

a)

 \(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD}  + \overrightarrow {DA} } \right)\\ = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow {AA}  = \overrightarrow 0 .\end{array}\)

b)

\(\overrightarrow {AC}  - \overrightarrow {AD}  = \overrightarrow {DC} \) và \(\overrightarrow {BC}  - \overrightarrow {BD}  = \overrightarrow {DC} \)

\( \Rightarrow \overrightarrow {AC}  - \overrightarrow {AD}  = \overrightarrow {BC}  - \overrightarrow {BD} \)