Cho tam giác ABC. Tìm quỹ tích điểm M thỏa mãn \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=3\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho tam giác ABC tìm M thỏa mãn:\(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
cho tam giác ABC tìm tập hợp các điểm M thỏa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho tam giác ABC và điểm M thỏa mãn
\(\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MC}\right|\)
Tìm Tập hợp điểm M?
cho △ABC. tìm tập hợp điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) bằng \(\dfrac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Gọi G là trọng tâm của tam giác ABC, I là trung điểm BC.
Dễ dàng chứng minh \(\left\{{}\begin{matrix}\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\\\dfrac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\dfrac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\end{matrix}\right.\)
Kết hợp điều kiện đề bài, ta có \(MG=MI\). Do đó M nằm trên đường trung trực của GI (cố định).
Vậy tập hợp điểm M thoả điều kiện đề bài là trung trực của đoạn GI.
Cho tam giác ABC. Tìm tập hợp điểm M thoả mãn một trong các điều kiện sau
a) \(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{MC}\right|\)
b \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=0\)
c) \(\left|\overrightarrow{MA}\right|=2\left|\overrightarrow{MC}\right|\)
d) \(\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Lời giải:
a.
\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)
Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$
b. Gọi $I$ là trung điểm $AB$. Khi đó:
\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)
\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)
\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)
Vậy điểm $M$ là trung điểm của $AB$
c.
Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$
\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)
\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)
\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)
\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)
\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)
Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$
d.
Gọi $I$ là trung điểm $BC$
\(|\overrightarrow{MB}+\overrightarrow{MC}|=|\overrightarrow{MB}-\overrightarrow{MC}|\)
\(\Leftrightarrow |\overrightarrow{MI}+\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}|=|\overrightarrow{CB}|\)
\(\Leftrightarrow |2\overrightarrow{MI}|=|\overrightarrow{CB}|\Leftrightarrow |\overrightarrow{MI}|=\frac{|\overrightarrow{CB}|}{2}\)
Vậy điểm $M$ thuộc đường tròn tâm $I$ bán kính $\frac{BC}{2}$
Cho tam giác ABC. Tìm quỹ tích những điểm M thỏa mãn: \(MA^2+\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MA}.\overrightarrow{MC}=0\)
\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)
=>vecto MA=0 hoặc M là trọng tâm của ΔABC
=>M là trọng tâm của ΔABC hoặc M trùng với A
Cho tam giác ABC, tìm quỹ tích điểm M thỏa mãn:
a) \(\left|\overrightarrow{MA}+\overrightarrow{BC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
b) \(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{4MB}-\overrightarrow{MC}\right|\)
c) \(\left|\overrightarrow{4MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{2MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
(Sử dụng kiển thức về tích của hai vecto)
a) Ta có \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\overrightarrow{MA}+\overrightarrow{BC}\) = \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}\)
⇒\(\left|\overrightarrow{MG}\right|=\left|\overrightarrow{BA}\right|\)
⇒ M là điểm trên đường tròn tâm G bk là AB
Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3\)?
A. Vô số
B. 1
C. 2
D. 3
Gọi G là trọng tâm của tam giác ABC, ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Rightarrow \overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 3\overrightarrow {MG} \)
Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3 \Leftrightarrow \left| {3\overrightarrow {MG} } \right| = 3\) hay \(MG = 1\)
Vậy tập hợp các điểm M thỏa mãn là đường tròn tâm G, bán kính 1.
Nói cách khác có vô số điểm M thỏa mãn ycbt.
Chọn A.
Cho tam giác ABC. Tìm Tập hợp các điểm M sao cho \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+\overrightarrow{2MB}+\overrightarrow{3MC}\right|\)
Gọi G là trọng tâm ΔABC
⇒ VT = 6MG
VP = \(\left|2\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)+\overrightarrow{MC}-\overrightarrow{MA}\right|\)
VP = \(\left|6\overrightarrow{MG}+\overrightarrow{AC}\right|\)
Xác định điểm I sao cho \(6\overrightarrow{IG}+\overrightarrow{AC}=\overrightarrow{0}\) (cái này chắc bạn làm được)
VP = \(\left|6\overrightarrow{MI}+6\overrightarrow{IG}+\overrightarrow{AC}\right|\)
VP = 6 MI
Khi VT = VP thì MG = MI
⇒ M nằm trên đường trung trực của IG
Tập hợp các điểm M : "Đường trung trực của IG"