Cho tam giác ABC, tìm quỹ tích điểm M thỏa mãn:
a) \(\left|\overrightarrow{MA}+\overrightarrow{BC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
b) \(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{4MB}-\overrightarrow{MC}\right|\)
c) \(\left|\overrightarrow{4MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{2MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
(Sử dụng kiển thức về tích của hai vecto)
a) Ta có \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\overrightarrow{MA}+\overrightarrow{BC}\) = \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}\)
⇒\(\left|\overrightarrow{MG}\right|=\left|\overrightarrow{BA}\right|\)
⇒ M là điểm trên đường tròn tâm G bk là AB