§2. Tổng và hiệu của hai vectơ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Phương

Cho tam giác ABC. Tìm tập hợp điểm M thoả mãn một trong các điều kiện sau

a) \(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{MC}\right|\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=0\)

c) \(\left|\overrightarrow{MA}\right|=2\left|\overrightarrow{MC}\right|\)

d) \(\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)

Akai Haruma
14 tháng 8 2021 lúc 1:47

Lời giải:

a.

\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)

Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$

b. Gọi $I$ là trung điểm $AB$. Khi đó:

\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)

\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)

\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)

Vậy điểm $M$ là trung điểm của $AB$

 

 

Akai Haruma
14 tháng 8 2021 lúc 1:52

c.

Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$

\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)

\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)

\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)

\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)

\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)

Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$

 

Akai Haruma
14 tháng 8 2021 lúc 16:26

d.
Gọi $I$ là trung điểm $BC$

\(|\overrightarrow{MB}+\overrightarrow{MC}|=|\overrightarrow{MB}-\overrightarrow{MC}|\)

\(\Leftrightarrow |\overrightarrow{MI}+\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}|=|\overrightarrow{CB}|\)

\(\Leftrightarrow |2\overrightarrow{MI}|=|\overrightarrow{CB}|\Leftrightarrow |\overrightarrow{MI}|=\frac{|\overrightarrow{CB}|}{2}\)

Vậy điểm $M$ thuộc đường tròn tâm $I$ bán kính $\frac{BC}{2}$
 


Các câu hỏi tương tự
Bảo Ken
Xem chi tiết
yeens
Xem chi tiết
Nguyễn Thảo Nguyên
Xem chi tiết
Phạm Thị Phương
Xem chi tiết
Nguyễn Tuấn Khoa
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Phạm Vũ Tuấn Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết