cho hình chữ nhật ABCD có AB=3a, AD=a. Điểm M là trung điểm của AM. Tính véc tơ tổng:
a)\(\left|\overrightarrow{AM}+\overrightarrow{AB}\right|\)
b)\(\left|\overrightarrow{AB}+\overrightarrow{CD}\right|\)
c) Cho điểm N thuộc AB sao cho AN = AD. Tính véc tơ tổng \(\left|\overrightarrow{DN}+\overrightarrow{BN}\right|\)
Cho đoạn thẳng AB và điểm M nằm giữa A và B sao cho \(AM>MB\). Vẽ các vectơ \(\overrightarrow{MA}+\overrightarrow{MB}\) và \(\overrightarrow{MA}-\overrightarrow{MB}\) ?
Cho đoạn thẳng AB, xát định điểm M sao cho |\(\overrightarrow{MA}\)+\(\overrightarrow{MB}\)|=\(\sqrt{3}\)
Cho tam giác ABC có M, N lần lượt là trung điểm của AB và AC, điểm K nằm trên đoạn MN sao cho \(\overrightarrow{KM}=-2\overrightarrow{KN}\). Tính \(\overrightarrow{AK}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho tam giác ABC. Tìm tập hợp điểm M thoả mãn một trong các điều kiện sau
a) \(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{MC}\right|\)
b \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=0\)
c) \(\left|\overrightarrow{MA}\right|=2\left|\overrightarrow{MC}\right|\)
d) \(\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
***Cho tam giác ABC với J là trung điểm của AB, I là trung điểm JC. M,N là hai điểm thay đổi trên mặt phẳng sao cho \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}\)
Chứng minh M, N, I thẳng hàng.
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau :
a) \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\)
b) \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\)
c) \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\)
Cho hình vuông ABCD cạnh a, O=\(AB\cap BD\). Tính:
\(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|\),\(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|\), \(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|\)
Cho hình vuông ABCD cạnh a; O=\(AB\cap BD\). Tính:
\(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|\), \(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|\), \(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|\)